TUM – Technische Universität München Menü
Erstautor Maximilian Fottner und Prof. Kathrin Lang im Labor. (Bild: A. Battenberg / TUM)
Erstautor Maximilian Fottner und Prof. Kathrin Lang im Labor. (Bild: A. Battenberg / TUM)
  • Forschung

Markierung von Proteinen mit Ubiquitin ermöglicht neue Forschung zur Zellregulation

Das Zünglein an der Waage

Menschliche Zelle verfügen über ein raffiniertes Regulierungssystem: die Markierung von Eiweißen mit dem kleinen Proteinmolekül Ubiquitin. Einem Team der Technischen Universität München (TUM) ist es jetzt erstmals gelungen, Proteine sowohl im Reagenzglas als auch in lebenden Zellen gezielt mit Ubiquitin zu versehen. Mit dem Verfahren lässt sich nun erforschen, wie dieses lebenswichtige Regulierungssystem funktioniert.

Pflanzen haben es, Pilze, Tiere und auch Menschen: das Protein Ubiquitin. Es besteht aus einer Abfolge von 76 Aminosäuren und ist damit ein eher kleines Biomolekül. Doch sein Einfluss ist weitreichend: Art, Position und Anzahl der an ein Protein gebundenen Ubiquitin-Moleküle bestimmen Stabilität, Funktion und Aufenthaltsort des Proteins innerhalb der Zelle.

„Praktisch jeder Prozess in der Zelle wird direkt oder indirekt durch Ubiquitin beeinflusst. Daher werden Fehlfunktionen dieses Markierungsmechanismus mit dem Entstehen und Fortschreiten von Krebs und vielen anderen schweren Krankheiten in Verbindung gebracht“, erklärt Kathrin Lang, Professorin für Synthetische Biochemie an der TU München.

Die Entdeckung der Rolle dieses zellulären Regulierungssystems beim kontrollierten Abbau von zu entsorgenden Proteinen wurde 2004 mit dem Chemie-Nobelpreis ausgezeichnet. Wie Ubiquitin-Modifikationen im Einzelnen die Funktion der Zelle beeinflussen, ist jedoch in vielen Fällen ungeklärt. Kathrin Langs Team hat nun ein Verfahren entwickelt, mit dem sich Ubiquitin-Markierungen gezielt an Zielproteinen anbringen lassen – ein Schlüssel zur Erforschung des Systems.

Ein bakterielles Enzym schafft neue Verbindungen

Die Strategie des Teams umgeht das komplizierte natürliche System mit zwei Tricks: In natürliche Proteine wird zunächst eine modifizierte Aminosäure eingebaut, an die dann das aus Bakterien stammende Enzym Sortase ein Ubiquitin oder ein Ubiquitin-ähnliches Molekül anhängen kann.

„Die größte Herausforderung lag darin, die verschiedenen Schritte – den Einbau der nicht natürlichen Aminosäure in ein Zielprotein und die Übertragung des Ubiquitins durch das Enzym Sortase – so aufeinander abzustimmen, dass sie nicht nur im Reagenzglas sondern auch in lebenden Zellen funktionieren“, erinnert sich Maximilian Fottner, der Erstautor der Studie.

Mittlerweile haben die Forscher an der TU München ihr neues Verfahren für viele verschiedene zelluläre Proteine optimiert und zum Patent angemeldet. „Wir haben bereits Kooperationen mit Medizinern und Zellbiologen gestartet, die nun gemeinsam mit uns die Auswirkungen von Ubiquitin-Markierungen auf das Entstehen von Krebs und neurodegenerativen Erkrankungen wie Parkinson auf molekularer Ebene studieren wollen“, freut sich Prof. Lang.

Publikation:

Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase
Maximilian Fottner, Andreas-David Brunner, Verena Bittl, Daniel Horn-Ghetko,
Alexander Jussupow , Ville R. I. Kaila, Anja Bremm and Kathrin Lang
Nature Chemical Biology, 15, 276–284 (2019) – DOI: 10.1038/s41589-019-0227-4

Nature Chemical Biology, News & Views: Decoding without the cipher
Amit Kumar Singh Gautam, Andreas Matouschek
Nature Chemical Biology, 15, 210–212 (2019) – DOI: 10.1038/s41589-019-0230-9

Mehr Informationen:

Bei ihren Forschungsarbeiten kooperierte das Team von Kathrin Lang mit den Gruppen von Prof. Ville R. I. Kaila, Professur für Computergestützte Biokatalyse der TU München und der Gruppe von Dr. Anja Bremm von der Goethe Universität Frankfurt am Main.

Gefördert wurden die Arbeiten durch Mittel der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Exzellenz-Clusters Center for Integrated Protein Science Munich (CIPSM), das Internationale Graduiertenkolleg GRK 1721, sowie die Sonderforschungsbereiche SFB 1309, SFB 1035 und das Schwerpunktprogramm SPP 1623. Kathrin Lang ist im Rahmen ihrer Rudolf Mößbauer Tenure Track-Professur Fellow des Institute for Advanced Study der TUM.

Bilder mit hoher Auflösung:

https://mediatum.ub.tum.de/1483031

Kontakt:


Prof. Dr. Kathrin Lang
Technische Universität München
Professur für Synthetische Biochemie
Lichtenbergstr. 4, 85748 Garching
Tel.: +49 89 289 13836
kathrin.lang(at)tum.de

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg
battenberg(at)zv.tum.de