Montage einer Akku-Zelle im Instrument ANTARES des FRM II. (Foto: Wenzel Schürmann / TUM)
Montage einer Akku-Zelle im Instrument ANTARES des FRM II. (Foto: Wenzel Schürmann / TUM)
  • Forschung

Neutronen helfen Herstellung von Lithiumionen-Zellen zu beschleunigenSchnelleres Befüllen von Lithiumionen-Akkus

Entwickler von Bosch und Wissenschaftler der Technischen Universität München (TUM) haben Neutronen eingesetzt, um das Befüllen eines Lithiumionen-Akkus für Hybridautos mit Elektrolytflüssigkeit zu analysieren. Ihr Experiment zeigte, dass die Elektroden unter Vakuum doppelt so schnell benetzt werden wie unter Normaldruck.

Einer der kritischsten und zeitlich aufwändigsten Prozesse in der Batterieherstellung ist das Befüllen der Lithiumionen-Zellen mit Elektrolytflüssigkeit nachdem die Elektroden in die Batteriezelle eingebaut wurden. Während das Befüllen selbst nur wenige Sekunden dauert, warten Batteriehersteller oft mehrere Stunden lang, um sicher zu gehen, dass die Flüssigkeit vollständig in die Poren des Elektrodenstapels eingesogen ist.

Da Neutronen vom Metallgehäuse des Akkus kaum absorbiert werden, kann man mit ihnen Prozesse im Inneren die Akkus sehr gut analysieren. Zusammen mit Wissenschaftlern der TU München und der Universität Erlangen-Nürnberg untersuchten Mitarbeiter der Firma Bosch den Befüllprozess daher an der Neutronenradiografie- und Tomografieanlage ANTARES der Forschungs-Neutronenquelle FRM II in Garching.

Schneller im Vakuum

Viele Hersteller von Lithiumionen-Zellen befüllen die leeren Zellen im Vakuum. Indirekt wird der Prozess mit Widerstandsmessungen verfolgt. „Um sicher zu gehen, dass auch wirklich alle Poren der Elektrode mit Elektrolyt gefüllt sind, planen die Hersteller eine lange Sicherheitsmarge ein“, sagt Bosch-Entwickler Dr. Wolfgang Weydanz. „Das kostet Zeit und Geld.“

Im Licht der Neutronen sahen die Wissenschaftler, dass im Vakuum bereits nach gut 50 Minuten die gesamte Elektrode benetzt ist. Unter Normaldruck dauert dies rund 100 Minuten. Die Flüssigkeit breitet sich dabei in der Batteriezelle von allen vier Seiten aus gleichmäßig von außen zur Mitte hin aus.

Darüber hinaus nimmt die Elektrode unter Normaldruck zehn Prozent weniger Elektrolytflüssigkeit auf. Schuld daran sind Gase, die die Benetzung mit Flüssigkeit behindern, was die Wissenschaftler mit Hilfe der Neutronen erstmalig zeigen konnten.

Publikation:

Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process
W.J. Weydanz, H. Reisenweber, A. Gottschalk, M. Schulz, T. Knoche, G. Reinhart, M. Masuch, J. Franke, R. Gilles
Journal of Power Sources, Volume 380, 15 March 2018, Pages 126–134, https://doi.org/10.1016/j.jpowsour.2018.01.081

Kontakt:

Dr. Ralph Gilles
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Tel.: +49 89 289 14665
Ralph.Gilles@frm2.tum.de

www.mlz-garching.de/antares

Technische Universität München

Corporate Communications Center Andrea Voit / Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Dr. Tobias Chemnitz an der Testanlage für die Mo-99-Produktion am FRM II auf dem Forschungscampus Garching.

Weniger Abfall trotz niedrigerer Anreicherung

Die Nuklearmedizin verwendet Technetium-99m unter anderem zur Tumordiagnostik. Mit weltweit über 30 Millionen Anwendungen pro Jahr ist es das am häufigsten eingesetzte Radioisotop. Der Ausgangsstoff, Molybdän-99, wird vor…

Öl- und Gaspipelines sind die Schlagadern unserer Energieversorgung. Das Gemisch aus Gas, Öl und Wasser, das in ihnen transportiert wird, kann unter bestimmten Bedingungen extrem zähflüssig werden und sogar feste Pfropfen bilden, die die Pipeline komplett blockieren.

Neutronen erkennen Verstopfungen in Pipelines

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dr. Aurel Radulescu am Instrument KWS-2 des Jülich Centre for Neutron Science (JCNS) in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München

Optimaler Einbau des mRNA-Wirkstoffs in Nanopartikel

Die Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) spielt eine wichtige Rolle bei der Untersuchung von mRNA Nanopartikeln, ähnlich zu denen die im Covid-19-Impfstoff der…

Martin Mühlbauer montiert eine Lithium-Ionen-Zelle im Objektträger des hochauflösenden Pulverdiffraktometers (SPODI) am FRM II.

Gefangenes Lithium

Im Handy, Laptop oder auch im Elektroauto: überall verwenden wir Lithium-Ionen-Akkus. Doch nach einiger Zeit verlieren sie an Kapazität. Daher untersuchte ein deutsch-amerikanisches Forschungsteam den Aufbau und die…

Erstautor Sebastian Gruber und Prof. Dr. Petra Foerst bei der Auswertung der Daten zur Untersuchung der Gefriertrocknung.

Haltbar und frisch

Die Gefriertrocknung verhilft uns zu schmackhaften Trockenfrüchten im Müsli, zu haltbaren Joghurtkulturen und vielen weiteren wichtigen Produkten. Mit Neutronenstrahlen der Forschungs-Neutronenquelle Heinz Maier-Leibnitz…

Dr. Zachary Evenson am TOFTOF Flugzeitspektrometer im FRM II. (Bild: S. Mast / TUM)

Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bisherige Flash-Speicherchips. Mithilfe der Forschungs-Neutronenquelle der Technischen Universität München (TUM)…

Thomas Gigl und Stefan Seidlmayer an der Positronenquelle NEPOMUC – Foto: Wenzel Schürmann / TUM

Löcher in der Elektrode

Akkus, deren Kathode aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium besteht, gelten derzeit als die leistungsfähigsten. Doch auch sie haben eine begrenzte Lebensdauer. Schon beim ersten Zyklus verlieren sie bis…

Dr. Stefan Seidlmayer mit Dr. Petra Kudejová am Instrument PGAA des FRM II - Bild: Claudia Niiranen / TUM

Ewige Jugend für Batterien?

Ein wichtiges Problem von Lithiumionen-Akkus ist ihre Alterung. Sie mindert die erzielbare Speicherkapazität erheblich. Bisher ist nur wenig darüber bekannt, wie es dazu kommt. Wissenschaftler des Lehrstuhls für Technische…

Lithium-Ionen-Zelle aus der Vogelperspektive.

Live-Schaltung ins Innere der Batterie

Lithium-Ionen-Batterien gelten als Energiespeicher der Zukunft und sind vor allem für die Elektromobilität unverzichtbar. Sie haben die Fähigkeit, viel Energie zu speichern, sind aber vergleichsweise kompakt und leicht.…