Aus Kollisionsdaten des ALICE-Detektors am Large Hadron Collider des CERN ist es gelungen, unter anderem die starke Wechselwirkung zwischen einem Proton (rechts) und dem seltensten der Hyperonen, dem Omega-Hyperon (links), das drei seltsame Quarks enthält, mit hoher Präzision zu messen.
Aus Kollisionsdaten des ALICE-Detektors am Large Hadron Collider des CERN ist es gelungen, unter anderem die starke Wechselwirkung zwischen einem Proton (rechts) und dem seltensten der Hyperonen, dem Omega-Hyperon (links), das drei seltsame Quarks enthält, mit hoher Präzision zu messen.
Bild: D. Dominguez / CERN
  • Forschung
  • Lesezeit: 3 MIN

Präzise Messungen der starken Wechselwirkung zwischen stabilen und instabilen TeilchenDurchbruch in der Kernphysik

Eigentlich müssten sich die positiv geladenen Protonen in Atomkernen gegenseitig abstoßen, und doch halten selbst schwere Kerne mit vielen Protonen und Neutronen zusammen. Verantwortlich dafür ist die sogenannte starke Wechselwirkung. Prof. Laura Fabbietti und ihre Forschungsgruppe an der Technischen Universität München (TUM) haben nun eine Methode entwickelt, bei Teilchenkollisionen am Experiment ALICE am CERN in Genf die starke Wechselwirkung präzise zu messen.

Die starke Wechselwirkung ist eine der vier Grundkräfte der Physik. Sie ist wesentlich dafür verantwortlich, dass Atomkerne existieren, die aus mehreren Protonen und Neutronen bestehen. Protonen und Neutronen bestehen wiederum aus kleineren Teilchen, den sogenannten Quarks. Und auch diese hält die starke Wechselwirkung zusammen. 

Im Rahmen des Projekts ALICE (A Large Ion Collider Experiment) des CERN in Genf haben Prof. Laura Fabbietti und ihre Forschungsgruppe an der Technischen Universität München nun eine Methode entwickelt, mit hoher Präzision die Kräfte zu ermitteln, welche zwischen Protonen und Hyperonen wirken, instabile Teilchen mit sogenannten seltsamen Quarks. 

Die Messungen sind nicht nur bahnbrechend für das Gebiet der Kernphysik, sondern auch der Schlüssel zum Verständnis von Neutronensternen, einem der rätselhaftesten und faszinierendsten Objekte unseres Universums.

Vergleich zwischen Theorie und Experiment

Eine der größten Herausforderungen der modernen Kernphysik ist es, die starke Wechselwirkung zwischen Teilchen mit unterschiedlichem Quark-Gehalt mittels erster Prinzipien zu verstehen, diese also aus den Kräften zwischen den Bestandteilen der Teilchen, den Quarks und den die Kraft vermittelnden Gluonen, abzuleiten.

Die Theorie der starken Wechselwirkung erlaubt jedoch keine zuverlässigen Vorhersagen für normale Nukleonen mit up- und down-Quarks, sondern nur für Nukleonen, die schwere Quarks enthalten, wie Hyperonen. 

Experimente zur Messung der Kraft sind sehr schwierig, weil Hyperonen instabile Teilchen sind, die, kaum produziert, sofort wieder zerfallen. Ein aussagekräftiger Vergleich zwischen Theorie und Experiment war daher bislang nicht möglich. Die von Prof. Laura Fabbietti verwendete Methode öffnet nun eine Tür für hochpräzise Studien der Dynamik der starken Wechselwirkung am Teilchenbeschleuniger Large Hadron Collider (LHC).

Messung der starken Kraft auch für das seltenste Hyperon

Vor vier Jahren schlug Prof. Laura Fabbietti, Professorin für Dichte und seltsame hadronische Materie an der TUM, vor, die Femtoskopie zu nutzen, um die starke Wechselwirkung am Experiment ALICE zu erforschen. Diese Technik ermöglicht Untersuchungen mit einer räumlichen Auflösung nahe einem Femtometer (10-15 Meter). Dies entspricht etwa der Größe eines Protons und auch der räumlichen Größenordnung, in der die starke Wechselwirkung wirksam ist. 

Seither gelang es Prof. Fabbiettis Gruppe nicht nur, die Kollisionsdaten für die meisten Hyperon-Nukleon-Kombinationen zu untersuchen, sondern auch die starke Wechselwirkung für das seltenste aller Hyperonen, das Omega, zu bestimmen, welches aus drei seltsamen Quarks besteht. 

Darüber hinaus haben die Physiker auch einen theoretischen Rahmen entwickelt, der Vorhersagen liefern kann. „Meine TUM-Gruppe hat der Kernphysik am LHC damit einen neuen Weg zur Messung der starken Wechselwirkung eröffnet, der alle Arten von Quarks umfasst – und dies mit einer unerwarteten Präzision und an einem Ort, den vorher niemand gesehen hat“, sagt Prof. Fabbietti. In der jetzt in „Nature“ veröffentlichten Arbeit wird nur ein Teil der Interaktionen präsentiert, die zum ersten Mal untersucht wurden.

Enthalten Neutronensterne Hyperonen?

Ein Verständnis der Wechselwirkung zwischen Hyperonen und Nukleonen ist auch äußerst wichtig zur Überprüfung der Hypothese, ob Neutronensterne Hyperonen enthalten. Welche Kräfte zwischen den Teilchen herrschen, hat nämlich unmittelbaren Einfluss auf die Größe eines Neutronensterns. 

Bislang ist unbekannt, welche Beziehung zwischen der Masse und dem Radius eines Neutronensterns besteht. Prof. Fabbiettis Arbeit wird in Zukunft daher auch dazu beitragen, das Rätsel der Neutronensterne zu lösen.

Publikationen:

ALICE Collaboration: Unveiling the strong interaction among hadrons at the LHC
Nature, 588 , 232–238 (2020) – DOI: 10.1038/s41586-020-3001-6

Mehr Informationen:

  • Dem Projekt ALICE (A Large Ion Collider Experiment) am Large Hadron Collider (LHC) gehören mehr als 1000 Wissenschaftler aus über 100 Instituten in 30 Ländern an. In Deutschland sind folgende Institutionen beteiligt: Universität Bonn, Universität Frankfurt, GSI Helmholtzzentrum für Schwerionenforschung, Universität Heidelberg, Universität Münster, TUM, Universität Tübingen und Hochschule Worms. In Deutschland erhält ALICE finanzielle Förderung vom BMBF und dem GSI Helmholtzzentrum für Schwerionenforschung.
  • Bildmaterial mit hoher Auflösung: Bilder des ALICE-Detektors

Technische Universität München

Corporate Communications Center P. Riedel / A. Battenberg
andreas.battenberg(at)tum.de

Kontakte zum Artikel:

Prof. Dr. Laura Fabbietti
Professorin für Dichte und seltsame hadronische Materie
Technische Universität München
James-Franck-Str. 1, 85748 Garching
Tel.: +49 89 289 12433 – E-Mail

Weitere Artikel zum Thema auf www.tum.de:

Illustration von zwei fusionierenden Neutronensternen. Aus der Kollision breiten sich Gravitationswellen aus, wenige Sekunden später ereignet sich ein Ausbruch von Gammastrahlen. Von den zusammenwachsenden Sternen werden wirbelnde Materialwolken ausgestoßen.

800 Milliarden Grad in der kosmischen Küche

Sie gehören zu den spektakulärsten Ereignissen im Universum: Kollisionen von Neutronensternen. Einem internationalen Forschungsteam mit maßgeblicher Beteiligung der Technischen Universität München (TUM) ist es erstmals…

Künstlerische Umsetzung der Kollision zweier Neutronensterne.

Durchbruch für eine Multi-Messenger Astronomie

Zum ersten Mal ist es gelungen, Signale von elektromagnetischen und Gravitationswellen aus der Kollision zweier Neutronensterne zu messen. Physiker des von der Technischen Universität München (TUM) geführten…

Simulation der Kollision von Blei-Ionen bei ALICE.

Die Symmetrie des Universums

Warum verschwand die Antimaterie fast vollständig aus unserem Universum, die Materie aber nicht? Am Teilchenbeschleuniger der Großforschungseinrichtung CERN versuchen Wissenschaftlerinnen und Wissenschaftler dieses…