TUM – TUM – Menü

Ultraschall macht unterirdische Schäden von Meteoriteneinschlägen sichtbar

Krater unterm Stethoskop

Ultraschall eines Sandsteinblocks nach dem Einschlag eines Meteoriten-Modells
Wie hat der Einschlag des Mini-Meteoriten den Sandstein im Innern geschädigt? Die Ultraschall-Analyse wird es zeigen. (Bild: TUM / MEMIN)

Forschung

Ein Meteoriteneinschlag hinterlässt nicht nur auf der Erdoberfläche sichtbare Spuren. Auch unterirdisch entstehen Risse und Spalten, abhängig von Größe, Energie und Einschlagswinkel des Himmelskörpers. Das Ausmaß dieser Schädigungszone können geophysikalische Messverfahren bislang nur ungenau erfassen. Wissenschaftler der Technischen Universität München (TUM) arbeiten deshalb daran, die Bildung von Kratern besser zu verstehen: Sie haben dafür Miniatur-Meteorite unter Laborbedingungen einschlagen lassen – und unterziehen die Krater einer Ultraschallanalyse.

Bis zu 30.000 Kilometer pro Stunde schnell sind die Metallkugeln, die die Forscher auf einen Sandsteinblock schießen. Im Labor des Fraunhofer-Instituts für Kurzzeitdynamik in Freiburg simulieren die Miniatur-Meteorite die Zerstörungskraft von echten Einschlägen: Ein Zentimeter große Projektile hinterlassen einen sechs Zentimeter breiten und einen Zentimeter tiefen Sandsteinkrater. Dabei fällt die tatsächliche Schädigung im Inneren des Gesteins weitaus größer aus, als mit bloßem Auge oder im Mikroskop erkennbar ist – das haben Wissenschaftler der Technischen Universität München (TUM) mithilfe von Ultraschalltomographie ermittelt. Bis zu achtmal breiter als der eigentliche Krater ist die Zone, in der unterirdisch Risse und Spalten verlaufen.

Kosmische Kräfte im Labor

„Bei natürlichen Kratern können wir oft nur Vermutungen darüber anstellen, welche Schäden von dem Meteoriteneinschlag selbst stammen und welche Risse nachträglich durch die Verwitterung des Gesteins entstanden sind“, sagt Prof. Christian Große vom TUM-Lehrstuhl für Zerstörungsfreie Prüfung. Mit den Ultraschallmessungen können die Wissenschaftler nun systematisch erheben, wie sich Größe, Energie und Einschlagswinkel eines Meteoriten auf die Beschaffenheit der unterirdischen Schädigung auswirken. „Bei einem senkrechten Aufprall können wir beispielsweise eine halbkugelförmige Schädigungszone erfassen. Trifft der Meteorit schräg auf, kann das anders aussehen“, sagt Große.

Er arbeitet gemeinsam mit Geowissenschaftlern, Physikern und Ingenieuren daran, die Bildung von Meteoritenkratern besser zu verstehen. „Die Kollision von Himmelskörpern gehört zu den wichtigsten Prozessen bei der Entstehung unserer Galaxie. Mit den Kraterexperimenten können wir auch ihre Wirkung auf die Erde besser abschätzen.“

Signale aus dem Inneren des Gesteins

Mithilfe des Ultraschall-Tomographen lassen sich Grad und Ausbreitung der verborgenen Risse im Gestein erfassen, ohne die wertvollen experimentellen Krater zu beschädigen. Dazu wird ein akustisches Signal in einer bestimmten Frequenz durch den Sandsteinblock geschickt. Weil sich die Schallwellen im Gestein mit 3.000 Metern pro Sekunde etwa zehnmal schneller ausbreiten als in der Luft, verursachen Risse und Spalten Signale mit größerer Amplitude. Auf der Basis dieser Signale erstellen die Wissenschaftler Geschwindigkeitsfelder, die sichtbar machen, wo die Schallwellen von Rissen aufgehalten werden.

„Im nächsten Schritt verändern wir gezielt die Schussenergie und den Einschlagswinkel der Miniatur-Meteorite – und damit auch den unterirdischen Teil der Krater“, erklärt Große.

Über das Projekt:
Die von der Deutschen Forschungsgemeinschaft (DFG) finanzierte Forschergruppe MEMIN (Multidisciplinary Experimental and Modeling Impact Crater Research Network) verfolgt das Ziel, die Prozesse bei Hochgeschwindigkeitseinschlägen und die Bildung von Meteoritenkratern mit experimentellen und numerischen Verfahren zu analysieren. MEMIN ist eine ortsübergreifende Forschergruppe, an der neben dem Museum für Naturkunde Berlin das Fraunhofer Institut für Kurzzeitdynamik Freiburg, die Universität Freiburg, das Geoforschungszentrum Potsdam, die Technische Universität München, die Universität Münster und die University of California in Berkeley beteiligt sind. Das Projekt ist 2009 gestartet und konnte in diesem Jahr eine zweite Förderphase über drei Jahre erreichen.

Mehr Informationen:
www.memin.de

Einschläge der Modell-Meteoriten im Video:
http://youtu.be/pY1pK2a2zek
http://youtu.be/8-LuR4uFhMs

Publikation:
D. Moser, M. H. Poelchau, F. Stark, C. Große: Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments, Meteoritics & Planetary Science, 2013, doi: 10.1111/maps.12000
http://onlinelibrary.wiley.com/doi/10.1111/maps.12000/abstract

Kontakt:
Prof. Dr. Christian Große
Technische Universität München
Lehrstuhl für Zerstörungsfreie Prüfung
Tel: +49 89 289 27220
grosse@cbm.bv.tum.de
www.cbm.bv.tum.de

Videos und hochaufgelöste Bilder zum Download

Sandstein-Krater nach dem Einschlag eines Meteoriten-Modells.
Krater im Sandstein nach dem Einschlag eines Meteoriten-Modells. Das weiße Material in der Mitte ist pulverisierter Sandstein. Maßeinheit: 1 Zentimeter (Bild: TUM / MEMIN)
Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells.
Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells. Rechts: Die roten Linien zeigen Risse im Gestein. Links: numerisches Modell. Der rote Bereich zeigt poröses Gestein. (Bild: Museum für Naturkunde Berlin / MEMIN)