TUM – TUM – Menü

Computertomograf enthüllt das Innenleben von Otto Lilienthals Normal-Segelapparat

Lilienthal-Gleiter: Blick in ein „Wunder der Ingenieurskunst“

Das Video zeigt das Tuch und die Seilumwicklung. Später werden die Weidenholzstöcke mit den Insektenlöchern eingeblendet, die sich blau abzeichnen, weil die Materialdichte in diesen Bereichen gering ist.
Der Gleiter besteht aus einem Holzgerüst mit Stoffbespannung. Das Video zeigt den Stoff und die Seilumwicklung. Später werden die Weidenholzstöcke mit den Insektenlöchern eingeblendet, die sich blau abzeichnen, weil die Materialdichte in diesen Bereichen gering ist. (Video: Michael Mosch, Airbus Helicopters; Denis Kiefel, Testia-Airbus; Dr. Rainer Stößel, Airbus Group Innovations)
 

Forschung

Mit seinem innovativen Gleitflugapparat hat Otto Lilienthal vor mehr als 125 Jahren die Grundlage für die moderne Luftfahrt geschaffen. Weltweit sind nur noch vier Exemplare des Normal-Segelapparats erhalten, eines davon befindet sich im Deutschen Museum. Computertomografische Untersuchungen, die Forscher der Technischen Universität München (TUM) zusammen mit der Firma Airbus durchgeführt haben, erlauben erstmals einen Blick ins Innere der Konstruktionsstruktur. Die Bilder sollen Forschern und Restauratoren des Deutschen Museums bei der Konservierung helfen.

„Der Apparat ist ein Wunder der Ingenieurskunst: extrem leicht gebaut und aus flexiblen Materialien gefertigt, die an den entscheidenden Stellen verstärkt wurden.“ Wenn Prof. Christian Große, Leiter des TUM-Lehrstuhls für Zerstörungsfreie Prüfung, über Otto Lilienthals Flugapparat spricht, kommt er ins Schwärmen.

Der „Normal-Segelapparat“ besteht aus einem mit Stoff bespannten Holz-Skelett, das eine Spannweite von fast sieben Metern hat. Aus heutiger Sicht bildet die ausgetüftelte Konstruktion die Basis für die weitere Entwicklung der modernen Luftfahrt: So nutzten die Gebrüder Wright die Erkenntnisse Lilienthals, um das erste Motorflugzeug zu bauen. Vier Exemplare von Lilienthals Erfindung sind bis heute erhalten, eines davon befindet sich im Besitz des Deutschen Museums. Der Luftfahrt-Kurator des Museums, Andreas Hempfer, sagt: „Es ist ein Glücksfall, dass dieser Gleiter die Zeiten in einem authentischen, wenn auch sehr fragilen Zustand überstanden hat. Er erlaubt uns daher einzigartige Einblicke in die Arbeitsweise Lilienthals.“

Bisher können die Besucher der Flugwerft Schleißheim nur das Original-Gestellkreuz des Lilienthalgleiters bestaunen – auf der Museumsinsel und in Schleißheim sind aber Nachbauten des Flugapparats zu sehen. Die Forschungen zusammen mit der TUM zielen darauf ab, die Überreste des Original-Gleiters so zu konservieren, dass er in der Luftfahrtausstellung spätestens 2025 wieder ausgestellt werden kann. Eine detaillierte Zustandsbeschreibung wurde als Grundlage dafür nun von Teresa Donner und Laura Lehmacher vom Lehrstuhl für Restaurierung, Kunsttechnologie und Konservierungswissenschaft der TUM erstellt. Im Auftrag des Deutschen Museums untersuchten die beiden Studentinnen die Stoff- und Holzfragmente und erarbeiteten Vorschläge zur Konservierung des Flugapparates in Zusammenarbeit mit dem Kurator Andreas Hempfer, den Flugzeugrestauratoren Mathias Winkler und Philipp Stengele sowie den Konservierungswissenschaftlern am Deutschen Museum um Dr. Marisa Pamplona-Bartsch.

Blick unter den Lack

Bei den Untersuchungen sollte der Apparat natürlich nicht beschädigt werden. Die jungen TUM-Forscherinnen wandten sich daher an Christian Große als Experten für zerstörungsfreie Prüfungsverfahren. Er erklärt: „Ich habe in diesem Fall eine Computertomografie empfohlen. Mit ihr lassen sich große Objekte und verschiedene Materialien – hier haben wir es mit Holz, Textilien und metallischen Verstärkungselementen zu tun – detailliert abbilden. Die Prüfung ist zudem völlig zerstörungs- und kontaktfrei.“

Allerdings ist ein geeigneter Computertomograf nicht so leicht zu finden. Die Luftfahrtindustrie benutzt solche Hightech-Geräte, um Bauteile aus Faserverbundwerkstoffen zu prüfen. Die Ingenieure bei Airbus Helicopters in Donauwörth erklärten sich bereit, drei Fragmente des historischen Flugapparats mit der modernen Technik zu untersuchen. Die Auswertungen fanden anschließend bei Airbus Materials X und Airbus TESTIA in München statt.

Große erklärt: „Das Luftfahrtunternehmen verfügt über Computertomografen mit hervorragender Auflösung und eine große Erfahrung bei der Anwendung von zerstörungsfreien Prüfverfahren. Dank der Aufnahmen konnten wir eine Fülle von Details erkennen, ohne die wertvollen Originalbauteile zerstören zu müssen. Die verwendeten Auswerteverfahren gehören zu den modernsten weltweit.“

Gemeinsam Maßnahmen planen

Die 3D-Aufnahmen brachten Klebungen zum Vorschein, Nägel, Lackschichten und jede Menge Fraß-Löcher von Insekten. Teilweise sind die Holzstreben des Flugapparats völlig zerfressen und werden nur noch durch die äußere Lackschicht zusammengehalten. Die Nägel sind übrigens gebogen und so platziert, dass sie die Last verteilen – dies verstärkt die Konstruktion. „Das ist ein weiteres interessantes Detail, das wir erst durch die Computertomografie entdeckt haben“, so Große.

Die Ergebnisse der Untersuchungen helfen jetzt den Forschern zusammen mit den Konservierungswissenschaftlern am Deutschen Museum, die richtigen Restaurierungsverfahren zu entwickeln. So muss beispielsweise ein geeignetes Holzverfestigungsmittel gefunden werden. Allerdings ist der Einsatz von zerstörungsfreien Prüfverfahren nicht nur hilfreich für die Planung von Konservierungsmaßnahmen. Die Bilder, die der Computertomograf liefert, könnten auch genutzt werden, um den Besuchern der Ausstellung einen einzigartigen Blick ins Innere der Exponate zu ermöglichen, sagt Große.

Bild zur redaktionellen Verwendung:

https://mediatum.ub.tum.de/1381678

Weitere Informationen:

Kontakt:

Prof. Dr. Christian Große
Centrum Baustoffe und Materialprüfung
Lehrstuhl für Zerstörungsfreie Prüfung
Tel: + 49.89.289.27221
grosse@tum.de
www.zfp.tum.de

Der Original-Gleiter von Otto Lilienthal.
Der Original-Gleiter von Otto Lilienthal. (Foto: Deutsches Museum)