• 2.12.2013

Computermodelle der neuronalen Schallverarbeitung im Gehirn helfen Cochlea-Implantate zu verbessern

Hören besser verstehen

Wenn Kinder sprechen lernen, sind sie auf ein funktionsfähiges Gehör angewiesen. Hochgradig schwerhörigen Menschen können sogenannte Cochlea-Implantate das Hören wieder ermöglichen, indem sie den Hörnerv elektrisch erregen. Forscher der Technischen Universität München (TUM) arbeiten daran, die derzeitigen Grenzen dieser Technologie zu überwinden. Sie erforschen die Umsetzung der Signale im Hörnerv und ihre neuronale Verarbeitung im Gehirn. Mit den von ihnen entwickelten Computermodellen wollen die Hersteller ihre Geräte weiter verbessern.

Prof. Werner Hemmert, Leiter des Fachgebiets Bioanaloge Informationsverarbeitung an der TUM - Foto: Astrid Eckert/TUM
Prof. Werner Hemmert, Leiter des Fachgebiets Bioanaloge Informationsverarbeitung an der TUM - Foto: Astrid Eckert/TUM

Ein funktionierendes Gehör ist die Voraussetzung, um sprechen lernen zu können. Kinder mit angeborener Taubheit erhalten deshalb so früh wie möglich ein sogenanntes Cochlea-Implantat. Es besteht aus einem hinter dem Ohr getragenen Sprachprozessor mit Sendespule und dem eigentlichen Implantat, einem verkapselten und unter der Haut eingesetzten Mikroprozessor, der über eine Stimulationselektrode mit bis zu 22 Kontakten den Hörnerv direkt anregt.

Auch Erwachsenen, die ihr Hörvermögen verloren haben, können Cochlea-Implantate das Hören wieder ermöglichen. Innerhalb der letzten Jahrzehnte haben sich diese Implantate zu den erfolgreichsten Neuroprothesen entwickelt. Sprache können die Betroffenen damit inzwischen gut verstehen. Doch die Technik stößt an ihre Grenzen, beispielsweise beim Hören von Musik oder wenn viele Menschen durcheinander sprechen. Erste Verbesserungen bringt hier die beidseitige Versorgung mit Cochlea-Implantaten.

Ein weiterer Entwicklungssprung könnte erfolgen wenn es gelänge, das räumliche Hören wieder herzustellen. Da die Ohren ein paar Zentimeter voneinander entfernt sind, erreicht der von einer Quelle ausgehende Schall zuerst das eine Ohr und dann das andere. Die Differenz beträgt nur wenig Millionstel Sekunden, doch das Gehirn kann daraus berechnen, wo sich eine Schallquelle befindet. Moderne Mikroprozessoren könnten zwar so schnell reagieren, doch ein Nervenimpuls dauert fast hundertmal so lange. Um hier ein perfektes Zusammenspiel zu erreichen, sind völlig neue Strategien nötig.

Modellierung des Hörens

Die Wahrnehmung von Schallsignalen beginnt im Innenohr. Hier übersetzen Haarsinneszellen die mechanischen Schwingungen in die Sprache der Nervenzellen, sogenannte Aktionspotenziale. Über neuronale Schaltstationen im Stammhirn, Mittelhirn und Zwischenhirn werden die Signale in die Hörrinde (auditorischer Kortex) übertragen, wo schließlich rund 100 Millionen Nervenzellen für den subjektiven Höreindruck verantwortlich sind. Doch über die Details dieser „Kodierung“ genannten Übersetzung weiß die Wissenschaft bisher noch wenig.

„Damit die Implantate präziser arbeiten können, sind Kodierungsstrategien notwendig, die besser auf die Informationsverarbeitung der neuronalen Schaltkreise im Gehirn abgestimmt sind. Voraussetzung dafür ist, dass wir das Hörsystem besser verstehen“, erläutert Professor Werner Hemmert, Leiter des Fachgebiets Bioanaloge Informationsverarbeitung (BAI) am Zentralinstitut für Medizintechnik (IMETUM) der TU München.

Auf der Basis physiologischer Messungen an Neuronen gelang es seiner Arbeitsgruppe, die Schallkodierung im Innenohr und die neuronale Informationsverarbeitung im Hirnstamm im Computer zu modellieren. Mit diesen Modellen können sie nun die Kodierungsstrategien weiter entwickeln und in Experimenten mit Normalhörenden und Implantatträgern testen.

Schneller zu besseren Geräten

Auch für die Hersteller von Cochlea-Implantaten, mit denen die TUM-Forscher zusammenarbeiten, stellen die Modelle wertvolle Evaluationswerkzeuge dar. Vorabtests am Computermodell bedeuten für die Hersteller eine enorme Zeit- und Kostenersparnis. „Viele Ideen lassen sich so wesentlich schneller überprüfen, und nur die erfolgversprechendsten Verfahren müssen danach in langwierigen Probandentests evaluiert werden“, sagt Werner Hemmert. Die neuen Modelle haben damit das Potenzial, die Entwicklungszyklen deutlich zu verkürzen. „Auf diese Weise kommen die Patienten schneller zu besseren Geräten“.

Video zur Cochlea-Implantat-Forschung der Arbeitsgruppe (YouTube)

 

Publikation:

Über ihre Arbeit berichtet die Arbeitsgruppe im neu erschienenen Fachbuch „The Technologie of Binaural Listening“, das auf der 166. Tagung der Acoustical Society of America in San Francisco (2.-6. Dezember 2013) vorgestellt wird.

M. Nicoletti, C. Wirtz, W. Hemmert: Modeling Sound Localization with Cochlear Implants, The Technology of Binaural Listening, Springer-Verlag Berlin Heidelberg, 2013

Kontakt:

Prof. Dr.-Ing. Werner Hemmert
Technische Universität München
Zentralinstitut für Medizintechnik (IMETUM)
Boltzmannstr. 11, 85748 Garching, Germany
Tel.: +49 89 289 10853E-MailInternet

Technische Universität München

Corporate Communications Center

HSTS