• 4.5.2017

Analyse von WLAN-Daten liefert dreidimensionale Bilder der Umgebung

Holografie mit dem WLAN-Router

Wissenschaftler der Technischen Universität München (TUM) haben ein holografisches Abbildungsverfahren entwickelt, das die Strahlung eines WLAN-Senders analysiert und damit dreidimensionale Bilder der Umgebung erzeugt. Einsetzbar wäre das Verfahren beispielsweise im Kontext von Industrie 4.0: Betreiber von Industrieanlagen könnten damit in Zukunft automatisiert Objekte auf dem Weg durch die Werkshalle verfolgen.

Das im Realbild sichtbare Kreuz aus Aluminiumfolie lässt sich aus dem WLAN-Hologramm wieder rekonstruieren (eingeblendetes Bild rechts unten) (Bild: Friedemann Reinhard/Philipp Holl / TUM)
Das im Realbild sichtbare Kreuz aus Aluminiumfolie lässt sich aus dem WLAN-Hologramm wieder rekonstruieren (eingeblendetes Bild rechts unten) (Bild: Friedemann Reinhard/Philipp Holl / TUM)

Wie der Blick durch ein Fenster, liefert ein Hologramm ein dreidimensional erscheinendes Abbild. Während für das optische Hologramm aufwändige Lasertechnik benötigt wird, lässt sich ein Hologramm der Mikrowellenstrahlung eines WLAN-Senders mit einer feststehenden und einer beweglichen Antenne erzeugen, wie Dr. Friedemann Reinhard und Philipp Holl im renommierten Fachjournal Physical Review Letters berichten.

„Mit dieser Technik können wir ein dreidimensionales Bild des Raums erzeugen, in dem sich der WLAN-Sender befindet, so als hätten wir Augen für Mikrowellenstrahlung,“ sagt Friedemann Reinhard, Leiter der Emmy Noether Forschungsgruppe für Quantensensoren am Walter Schottky Institut der TU München. Einsatzmöglichkeiten sehen die Forscher vor allem im Kontext von Industrie 4.0, automatisierter Industrieanlagen, in denen es oftmals schwierig ist, Teile oder Geräte automatisiert zu lokalisieren.

WLAN durchdringt Wände

Verfahren, bei denen Mikrowellenstrahlung sogar durch Wände hindurch geortet wird, oder bei denen die Veränderung des Signals die Anwesenheit einer Person anzeigt, gibt es bereits. Neu ist, dass die holografische Aufbereitung der WLAN- oder Handysignale ein dreidimensionales Abbild des gesamten Raumes liefert.

„Natürlich liegt es da nahe, sich Sorgen um seine Privatsphäre zu machen, denn selbst verschlüsselte Signale übertragen gewissermaßen ein Bild der Umgebung nach außen,“ sagt Projektleiter Friedemann Reinhard, schränkt aber auch ein „Dass das Verfahren in naher Zukunft für den Blick in fremde Schlafzimmer genutzt wird, ist aber eher unwahrscheinlich. Man müsste dazu eine große Antenne um das Gebäude herumfahren, was kaum unbemerkt bleiben dürfte. Da gibt es einfachere Möglichkeiten.“

Auf wenige Zentimeter genau

Bisher sind für das Erzeugen von Bildern aus Mikrowellenstrahlung spezielle Sender mit großer Bandbreite erforderlich. Die holografische Auswertung der Daten ermöglichte es den Forschern, auch mit der sehr geringen Bandbreite haushaltsüblicher WLAN-Sender auszukommen, die in den Frequenzbändern 2,4 und 5 Gigahertz senden. Auch Bluetooth- und Handy-Signale können genutzt werden. Die Wellenlänge dieser Geräte entspricht einer Auflösung im Bereich weniger Zentimeter.

„Statt einer beweglichen Antenne, die Bildpunkt für Bildpunkt misst, könnte man auch eine größere Zahl von Antennen nehmen und damit eine videoähnliche Bildfrequenz erreichen,“ sagt Philipp Holl, der die Versuche durchführte. „Zukünftige WLAN-Frequenzen, wie der geplante IEEE 802.11-Standard mit 60 Gigahertz, erschließen eine Auflösung bis in den Millimeterbereich.“

Blick in die Zukunft

Auch aus der Optik bekannte Methoden zur Bildverbesserung können bei der WLAN-Holografie eingesetzt werden: Ein Beispiel ist die aus der Mikroskopie bekannte Dunkelfeld-Methode, die es ermöglicht, schwach streuende Strukturen besser erkennen zu können. Ein weiteres Verfahren ist die Weißlicht-Holografie: Hier nutzten die Forscher die geringe Bandbreite des WLAN-Senders, um Störungen durch Streustrahlung zu eliminieren.

Das Konzept, Mikrowellen-Hologramme wie optische Bilder zu betrachten, ermöglicht es auch, das Mikrowellenbild mit Kamerabildern zu kombinieren. In das Kamerabild des Handys könnten so aus Mikrowellenbildern gewonnene Zusatzinformationen eingeblendet werden, etwa um Funk-Schlüsselanhänger an verlorenen Gegenstände direkt zu sehen.

Doch mit ihrer Arbeit stehen die Wissenschaftler erst am Anfang der technologischen Entwicklung. Noch fehlt vor allem Forschung dazu, wie transparent welche Materialien sind. Mit diesen Kenntnissen ließen sich dann zum Schutz der Privatsphäre für Mikrowellen undurchsichtige Anstriche oder Tapeten entwickeln, während man für Fabrikhallen, in denen man den Weg eines Bauteils durch die Anlage verfolgen will, transparente Materialien einsetzen würde.

Entsprechend weiter entwickelte Technik könnte, so hoffen die Forscher, in Zukunft bei der Suche nach Verschütteten unter einer Lawine oder in einem eingestürzten Haus helfen: Während bisherige Methoden nur die Ortung erlauben, lieferte die holografische Auswertung der Signale auch ein räumliches Abbild der zerstörten Strukturen. Schwere Trümmerstücke könnten Helfer dann umgehen oder verbliebene Hohlräume für die Rettung nutzen und so planvoll den leichtesten Weg zum Opfer finden.

 

Die Arbeit wurde unterstützt aus Mitteln des Emmy Noether-Programms der Deutschen Forschungsgemeinschaft (DFG) und aus dem TUM Junior Fellow Fund.

Publikation

Philipp M. Holl and Friedemann Reinhard: Holography of Wi-fi Radiation.
Physical Review Letters, 05.05.2017 – DOI: 10.1103/PhysRevLett.118.183901

Kontakt

Dr. Friedemann Reinhard
Technische Universität München
Walter Schottky Institut, E24
Am Coulombwall 4, 85748 Garching
Tel.: +49 89 289 12777 – E-MailWeb

Technische Universität München

Corporate Communications Center

Aktuelles zum Thema

HSTS