Mikael Simons is professor for Molecular Neurobiology at TUM.
Mikael Simons is professor for Molecular Neurobiology at TUM.
Image: A. Eckert / TUM
  • Covid-19, Research news
  • Reading time: 4 MIN

Coronavirus: Neuropilin-1 could open the door to the inside of the cellHow the virus enters the cell

The protein neuropilin-1 facilitates SARS CoV-2 cell entry. A research team including Prof. Mikael Simons of the Technical University of Munich (TUM) recently published these findings in the journal "Science". Because neuropilin-1 is expressed in the mucous membranes of the olfactory and respiratory tract, the findings may be important for understanding the spreading of SARS CoV-2.

The degree to which a virus spreads depends on its infectivity. While the coronavirus SARS-CoV-2 has led to severe pandemic, a related virus, SARS-CoV, led to a much smaller outbreak in 2003, possibly because the infection was limited to the lower respiratory system. SARS-CoV-2, in contrast, infects the upper portions of the respiratory tract, including the nasal mucous membrane and, in consequence, spreads rapidly through active viral shedding. Researchers at TUM, the German Center for Neurodegenerative Diseases (DZNE), the University Clinic Universitätsmedizin Göttingen and the University of Helsinki have investigated the nature of SARS-CoV-2 infectivity.

A passkey to the cell's interior

Receptors are necessary to promote the entry of a virus into a cell. Both SARS-CoV and SARS-CoV-2 use ACE2 as a receptor, but trigger different illnesses. In order to understand why the two related viruses infect different types of cells, the researchers took a look at the viral “spike proteins” that are essential for virus entry.

"The SARS-CoV-2 spike protein differs from its older relative by the insertion of a furin cleavage site," says Mikael Simons, TUM professor for Molecular Neurobiology and research group leader at the DZNE. When proteins are cleaved by furin, a specific amino acid sequence is exposed on the cleaved end. These furin-cleaved substrates exhibit a characteristic pattern, which is known to bind to neuropilins at the cell surface.

Experiments using cells cultured in the laboratory, in conjunction with artificial viruses that mimic SARS-CoV-2 as well as naturally occurring virus, indicate that neuropilin-1 is able to promote infection in the presence of ACE2. By specifically blocking neuropilin-1 with antibodies, infection was suppressed. "If you think of ACE2 as a door to enter the cell, then neuropilin-1 could be a factor that directs the virus to the door. ACE2 is expressed at very low levels in most cells. Thus, it is not easy for the virus to find doors to enter. Other factors such as neuropilin-1 might be necessary to help the virus," Simons explains.

Possible path into the nerve tract

Since loss of smell is among the COVID-19 symptoms and neuropilin-1 is found in the cell layer of the nasal cavity, the scientists examined tissue samples from deceased patients. "We wanted to find out whether cells equipped with neuropilin-1 are really infected by SARS-CoV-2, and found that this was the case," says Simons.

Additional experiments in mice showed that neuropilin-1 enables transport of tiny, virus-sized particles from the nasal mucosa to the central nervous system. When the nanoparticles were administered to the nose of the animals, they reached neurons and capillary vessels of the brain within few hours ─ in contrast to control particles without affinity for neuropilin-1. "We could determine that neuropilin-1, at least under the conditions of our experiments, promotes transport into the brain, but we cannot make any conclusion on whether this is also true for SARS-CoV-2. It is very likely that this pathway is suppressed by the immune system in most patients," says Simons.

Approach for future therapies?

"SARS CoV-2 requires the ACE2 receptor in order to penetrate cells, but other factors such as neuropilin-1 are possibly needed in order to support its function," says Simons. "Currently, we can only speculate about the molecular processes involved. Presumably, neuropilin-1 catches the virus and directs it to ACE2. Further investigations are needed to clarify this issue. It is currently too early to speculate whether blocking neuropilin could be a viable therapeutic approach. This will have to be addressed in future studies."

 

Publications:

Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, L. Cantuti-Castelvetri, R. Ojha, L. D. Pedro, M. Djannatia, J. Franz, S. Kuivanen, M. Simons et al., Science (2020).
DOI: 10.1126/science.abd2985

Corporate Communications Center

Contacts to this article:

Prof. Dr. Mikael Simons
Technical University of Munich

Chair of Molecular Neurobiology
phone: +49 89 4400 46495
m.simons(at)tum.de

Article at tum.de

Ulrike Protzer is a Professor for Virology at TUM and spokesperson for the Bavarian alliance "FOR-COVID".

United against COVID

Contain and treat the coronavirus SARS-CoV-2 as quickly as possible – the Bavarian research alliance "FOR-COVID" will contribute to this with scientific findings relating to the virus and the COVID-19 disease. The alliance...

Conventional chest x-ray

New x-ray method for Corona diagnosis ready for patient testing

Researchers at the Technical University of Munich (TUM) have developed an innovative x-ray method for lung diagnostics, which they now plan to test in one of its first applications for diagnosis of the respiratory ailment...

Prof. Wall (r) and Dr. Biehler at work on their virtual lung model.

Computer model enables protective ventilation

The use of mechanical ventilation can save lives – and not just for COVID-19 patients who develop severe respiratory problems. But at the same time, the ventilation pressure puts immense stress on delicate lung tissue....

Staff member of the virology department at TUM evaluating the antibody tests.

Large Antibody Study at the Klinikum rechts der Isar

One of the largest antibody studies against SARS-CoV-2 in Germany has begun at the university hospital Klinikum rechts der Isar at Technical University of Munich (TUM). The employee study is intended to provide data on the...