A mass spectrometer device (detail): Using mass spectrometric analysis at the Max Planck Institute of Biochemistry, the researchers discovered 1484 interactions between viral and human cellular proteins.
Image: Sonja Taut / MPI of Biochemistry
  • Covid-19, Research news
  • Reading time: 3 MIN

Covid-19: analysis of protein interactions as a route to new drugsA multidimensional view of the coronavirus

What exactly happens when the corona virus SARS-CoV-2 infects a cell? In an article published in Nature, a team from the Technical University of Munich (TUM) and the Max Planck Institute of Biochemistry paints a comprehensive picture of the viral infection process. For the first time, the interaction between the coronavirus and a cell is documented at five distinct proteomics levels. This knowledge will help to gain a better understanding of the virus and find potential starting points for therapies.

When a virus enters a cell, viral and cellular protein molecules begin to interact. Both the replication of the virus and the reaction of the cells are the result of complex protein signaling cascades. A team led by Andreas Pichlmair, Professor of Immunopathology of Viral Infections at the Institute of Virology at TUM, and Matthias Mann, Head of the Department of Proteomics and Signal Transduction at the Max Planck Institute of Biochemistry, has systematically recorded how human lung cells react to individual proteins of the covid-19 pathogen SARS-CoV-2 and the SARS coronavirus, the latter of which has been known for some time.

A detailed interaction map

Prof. Andreas Pichlmair
Image: Magdalena Jooss / TUM

To this end, more than 1200 samples were analyzed using the state-of-the-art mass spectrometry techniques and advanced bioinformatic methods. The result is a freely accessible dataset that provides information on which cellular proteins the viral proteins bind to and the effects of these interactions on the cell. In total, 1484 interactions between viral proteins and human cellular proteins were discovered. “Had we only looked at proteins, however, we would have missed out on important information”, says Andreas Pichlmair. “A database that only includes the proteome would be like a map containing just the place names but no roads or rivers. If you knew about the connections between the points on that map, you could gain much more useful information.”

According to Pichlmair, important counterparts to the network of traffic routes on a map are protein modifications called phosphorylation and ubiquitination. Both are processes in which other molecules are attached to proteins, thereby altering their functions. In a listing of proteins, these changes are not measured, so that there is no way of knowing whether proteins are active or inactive, for example. “Through our investigations, we systematically assign functions to the individual components of the pathogen, in addition to the cellular molecules that are switched off by the virus,” explains Pichlmair. "There has been no comparable mapping for SARS-CoV-2 so far," adds Matthias Mann. “In a sense, we have taken a close look at five dimensions of the virus during an infection: its own active proteins and its effects on the host proteome, ubiquitinome, phosphoproteome and transcriptome.”

Insights into how the virus works

Among other things, the database can also serve as a tool to find new drugs. By analyzing protein interactions and modifications, vulnerability hotspots of SARS-CoV-2 can be identified. These proteins bind to particularly important partners in cells and could serve as potential starting points for therapies. For example, the scientists concluded that certain compounds would inhibit the growth of SARS-CoV-2. Among them were some whose antiviral function is known, but also some compounds which have not yet been studied for efficacy against SARS-CoV-2. Further studies are needed to determine whether they show efficacy in clinical use against Covid-19.

“Currently, we are working on new anti Covid-19 drug candidates, that we have been able to identify through our analyses,” says Andreas Pichlmair. “We are also developing a scoring system for automated identification of hotspots. I am convinced that detailed data sets and advanced analysis methods will enable us to develop effective drugs in a more targeted manner in the future and limit side effects in advance.”

Publications:

A. Stukalov, V. Girault, V. Grass, O. Karayel, V. Bergant, C. Urban, D. A. Haas, Y. Huang, L. Oubraham, A. Wang, M. S. Hamad, A. Piras, F. M. Hansen, M. C. Tanzer, I. Paron, L. Zinzula, T. Enghleitner, M. Reinecke, T. M. Lavacca, R. Ehmann, R. Wölfel, J. Jores, B. Kuster, U. Protzer, R. Rad, J. Ziebuhr, V. Thiel, P. Scaturro, M. Mann & A. Pichlmair. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature (2021). DOI: 10.1038/s41586-021-03493-4.

More information:

The TUM University Foundation provided funding for the screening platform used for this study. Andreas Pichlmair holds a professorship funded by the German Center for Infection Research (DZIF). The current study was funded by the European Research Council (ERC) as well as the German Federal Ministry of Education and Research.

High-resolution images:

https://mediatum.ub.tum.de/1609219

Technical University of Munich

Corporate Communications Center Paul Hellmich
paul.hellmich(at)tum.de

Contacts to this article:

Prof. Dr. Andreas Pichlmair
Technical University of Munich
Institute of Virology
Tel: +49 89 4140-9270
andreas.pichlmair(at)tum.de

Article at tum.de

[Translate to en:]

"Antivirally effective drugs are in the development pipeline"

On April 21, Ulrike Protzer, director of the Institute of Virology, and Andreas Pichlmair, Professor of Viral Immunopathology, will give the Covid-19 Lecture on virus-host interaction. Ahead of the event, Prof. Protzer...

Prof. Percy Knolle, director of the Institute of Molecular Immunology at TUM

"The infection needs to be controlled at an early stage"

The Covid-19 Lectures, a public online lecture series in German language, open on April 14 at 6:15 p.m. with a talk by Prof. Percy Knolle. In this interview the director of the Institute of Molecular Immunology at TUM...

Sport can prevent severe Covid-19 courses

Dr. Fritz Wimbauer is a senior physician at the Polyclinic for Preventive and Rehabilitative Sports Medicine at TUM's university hospitalm rechts der Isar and head of the outpatient clinic at Georg-Brauchle-Ring. In an...

Andreas Pichlmair is a Professor for Viral Immunopathology at TUM's Institute for Virology.

How epithelial cells ward off viruses

The ability to differentiate between self and potentially harmful non-self is vital for the integrity and survival of organisms. In most organisms, the so-called innate immune system is responsible for the recognition of...

Ulrike Protzer is a Professor for Virology at TUM and spokesperson for the Bavarian alliance "FOR-COVID".

United against COVID

Contain and treat the coronavirus SARS-CoV-2 as quickly as possible – the Bavarian research alliance "FOR-COVID" will contribute to this with scientific findings relating to the virus and the COVID-19 disease. The alliance...

Scientists of the TUM are conducting laboratory and computer research on the classification and therapy of Covid-19.

Fighting corona with machine learning

The Technical University of Munich (TUM) is starting five new research projects that focus on the coronavirus and the search for new active ingredients. For example, the use of algorithms could ensure a more precise...

Prof. Andreas Pichlmair (links) mit einem Mitarbeiter.

Our versatile viral defenses

The body’s defense strategies against viral infections are as diverse as the attacks themselves. A team from the Technical University of Munich (TUM) and the Max Planck Institute for Biochemistry has conducted a systematic...

Das wissenschaftliche Team der Zika-Virus Studie (von links nach rechts): Pietro Scaturro, Prof. Andreas Pichlmair und Dr. Alexey Stukalov. (Bild: A. Eckert / TUM)

Zika virus proteins inhibit brain development

In healthy individuals, the Zika virus causes flu-like symptoms. If a pregnant woman becomes infected, the unborn child can suffer from severe brain abnormalities as a result of mechanisms that have not yet been explained....