A research team has succeeded in creating an excitation in the magnetic order in a thin layer of hematite that can be moved through the layer in order to transmit information.
A research team has succeeded in creating an excitation in the magnetic order in a thin layer of hematite that can be moved through the layer in order to transmit information.
Image: C. Hohmann / MCQST
  • Quantum Technologies, Research news
  • Reading time: 3 MIN

Pseudospin in antiferromagnets: new perspectives for information technologiesInformation transport via magnons

A team of researchers from the Technical University of Munich (TUM), the Bavarian Academy of Sciences and Humanities (BAdW) and the Norwegian University of Science and Technology (NTNU) in Trondheim has discovered an exciting method for controlling spin carried by quantized spin wave excitations in antiferromagnetic insulators.

Elementary particles carry an intrinsic angular momentum known as their spin. For an electron, the spin can take only two particular values relative to a quantization axis, letting us denote them as spin-up and spin-down electrons. This intrinsic two-valuedness of the electron spin is at the core of many fascinating effects in physics.

In today’s information technology, the spin of an electron and the associated magnetic momentum are exploited in applications of information storage and readout of magnetic media, like hard disks and magnetic tapes.

Antiferromagnets: future stars in magnetic data storage?

Both, the storage media and the readout sensors utilize ferromagnetically ordered materials, where all magnetic moments align parallel. However, the moments may orient in a more complex way. In antiferromagnets, the “antagonist to a ferromagnet“, neighboring moments align in an anti-parallel fashion. While these systems look “non-magnetic” from outside, they have attracted broad attention as they promise robustness against external magnetic fields and faster control. Thus, they are considered as the new kids on the block for applications in magnetic storage and unconventional computing.

One important question in this context is, whether and how information can be transported and detected in antiferromagnets. Researchers at the Technical University of Munich, the Walther-Meissner-Institute of the BAdW and the Norwegian University of Science and Technology in Trondheim studied the antiferromagnetic insulator hematite in this respect. 

In this system, charge carriers are absent and therefore it is a particularly interesting testbed for the investigation of novel applications, where one aims at avoiding dissipation by a finite electrical resistance. The scientists discovered a new effect unique to the transport of antiferromagnetic excitations, which opens up new possibilities for information processing with antiferromagnets.

Unleashing the pseudospin in antiferromagnets

Dr Matthias Althammer, the lead researcher on the project describes the effect as follows: “In the antiferromagnetic phase, neighboring spins are aligned in an anti-parallel fashion. However, there are quantized excitations called magnons. Those carry information encoded in their spin and can propagate in the system. Due to the two antiparallel-coupled spin species in the antiferromagnet the excitation is of a complex nature, however, its properties can be cast in an effective spin, a pseudospin. We could experimentally demonstrate that we can manipulate this pseudospin, and its propagation with a magnetic field.” 

Dr Akashdeep Kamra, the lead theoretician from NTNU in Trondheim adds that “this mapping of the excitations of an antiferromagnet onto a pseudospin enables an understanding and a powerful approach which has been the crucial foundation for treating transport phenomena in electronic systems. In our case, this enables us to describe the dynamics of the system in a much easier manner, but still maintain a full quantitative description of the system. Most importantly, the experiments provide a proof-of-concept for the pseudospin, a concept which is closely related to fundamental quantum mechanics.”

Unlocking the full potential of antiferromagnetic magnons

This first experimental demonstration of magnon pseudospin dynamics in an antiferromagnetic insulator not only confirms the theoretical conjectures on magnon transport in antiferromagnets, but also provides an experimental platform for expanding towards rich electronics inspired phenomena. 

“We may be able to realize fascinating new stuff such as the magnon analogue of a topological insulator in antiferromagnetic materials” points out Rudolf Gross, director of the Walther-Meißner-Institute, Professor for Technical Physics (E23) at the Technical University of Munich and co-speaker for the cluster of excellence Munich Center for Quantum Science and Technology (MCQST). “Our work provides an exciting perspective for quantum applications based on magnons in antiferromagnets”.


Observation of Antiferromagnetic Magnon Pseudospin Dynamics and the Hanle Effect
T. Wimmer, A. Kamra, J. Gückelhorn, M. Opel, S. Geprägs,  R. Gross, H. Huebl, M. Althammer
Physical Review Letters 125, 247204 (2020) – DOI: 10.1103/PhysRevLett.125.247204

Antiferromagnetic magnon pseudospin: Dynamics and diffusive transport
A. Kamra, T. Wimmer, H. Huebl, M. Althammer
Physical Review B 102, 174445 (2020) – DOI: 10.1103/PhysRevB.102.174445

More information:

  • The research was funded by the Deutsche Forschungsgemeinschaft (DFG) via the cluster of excellence Munich Center for Quantum Science and Technology (MCQST) and by the Research Council of Norway.
  • High resolution images

Technical University of Munich

Corporate Communications Center I. Leicht (BAdW) / A. Battenberg

Contacts to this article:

Dr. Matthias Althammer, PD Dr. Hans Huebl,Prof. Dr. Rudolf Gross
Walther-Meißner-Institute for Low Temperature Research – Bavarian Academy of Sciences and Humanities
Walther-Meißner-Straße 8, 85748 Garching, Germany
Tel.: +49 89 289 14311 – e-mail: matthias.althammer(at)wmi.badw-muenchen.de

Related articles at www.tum.de

Quantum circuit, developed at the Walther-Meissner-Institut (WMI), which can be used to produce restricted microwave states.

The quantum internet is within reach

An international team headed by physicists from the Technical University of Munich (TUM) has, for the first time ever, experimentally implemented secure quantum communication in the microwave band in a local quantum…

The Helix Nebula, 700 light-years away from Earth. The ORIGINS Cluster of Excellence looks into the origins of both life and the universe itself.  (Image: ESO/VISTA/J. Emerson)

TUM successfully presents four research Clusters of Excellence

The Technical University of Munich (TUM) has got off to another successful start in the extremely competitive Excellence Initiative organized by Germany’s government and federal states. Over the next seven years, four…

Visualization of a future quantum computer with chips made of diamond and graphene - Image: Christoph Hohmann / NIM

Center for Quantum Engineering comes to Garching

In recent years, a globally esteemed research focus on quantum technologies has developed on the Garching campus. The German Council of Science and Humanities now supports the creation of a new central institute at the…