Forschende der TUM identifizieren in internationalen Wissenschaftsteams in Experimenten die ungenutzten genetischen Ressourcen zur Steigerung der Weizenerträge in der ganzen Welt.
TUM researchers, working in international science teams, are conducting experiments to identify untapped genetic resources to increase wheat yields around the world.
Image: iStockphoto.com / hopsalka
  • Sustainability, Research news
  • Reading time: 3 MIN

Utilizing substantial genetic potential for higher yieldsMore wheat for global food security

The disruptions in global trading markets resulting from the war in Ukraine, among other causes, have focused public attention on the issue of securing a sufficient supply of high-quality foods for the global population. Researchers at the Technical University of Munich (TUM) are searching for modern methods to boost global harvests and thus to ensure global food security. Wheat plays a special role in these efforts.


In terms of cultivated cropland, wheat is one of the most important grain varieties and plays a significant role as a basic food. It is grown in over hundred countries. However, the supply of wheat is inadequate and many developing and emerging countries are highly dependent on imports. Senthold Asseng, Professor of Digital Agriculture at TUM, has been working with international research teams to study scenarios and models that could lead the way out of the wheat crisis.

Wheat crisis threatens food security and global peace

Fluctuations in prices on global markets and in harvests have a major impact on the nutrition situation for many people worldwide. These supply bottlenecks have negative effects on the quality of life of the population that can undermine social stability. “The current global wheat crisis shows how important wheat is for the world. In many countries food security is linked to national security, civil unrest, migration and even war,” says Prof. Asseng, the director of the World Agricultural Systems Center - Hans Eisenmann Forum for Agricultural Sciences at TUM in Weihenstephan. “Wheat yields are stagnating in many parts of the world. Especially with the rising global population, steady increases in yields will be needed over the coming decades to secure global food needs,” warns Asseng.

Finding and utilizing hidden breeding resources

Prof. Asseng is working intensively on potential increases in wheat yields. As a scientist, his work is not limited to theoretical calculations and models. His research also engages directly with nature through field experiments, including work with regional wheat varieties. 

“We are approaching the biophysical limits of wheat yields. So we need to understand the functions of crops to boost yields further,” says the scientist. He firmly believes that the genetic resources of wheat are considerable. In his experiments, he has identified the unused genetic resources in this cultivated plant with the potential to increase yields around the world. He speaks of a genetic yield gap of 51 percent. The goal is to mobilize this breeding gap. This can be done by targeted breeding that will utilize the yield potential of wheat and thus lead to richer harvests.

Genetics are important, but only an interdisciplinary approach will achieve the goal

However, Prof. Asseng is certain: “Genetics alone cannot solve the global nutrition problems. We can achieve this only with an interdisciplinary approach through the application of genetics combined with soil and climate science as well as research into cultivated plants.” 

The use of advanced modern breeding instruments and the continual improvement of agricultural crop production through optimized plant and soil management will achieve the urgently needed increases in the global wheat harvest. "This can then bring about an effective solution for an adequate worldwide supply of food in the future," says Asseng.

Publications:

Senapati, N., Semenov, M.A., Halford, N.G. et al. Global wheat production could benefit from closing the genetic yield gap. Nat Food (2022). https://doi.org/10.1038/s43016-022-00540-9 

Reynolds, M.P., Slafer, G.A., Foulkes, J.M. et al. A wiring diagram to integrate physiological traits of wheat yield potential. Nat Food 3, 318–324 (2022). https://doi.org/10.1038/s43016-022-00512-z 
 

More information:

Prof. Senthold Asseng is the director of the World Agricultural Systems Center - Hans Eisenmann Forum (HEF) for Agricultural Sciences, a Corporate Research Center of TUM.

High resolution image 
 

Technical University of Munich

Corporate Communications Center Dagmar Wagner
presse(at)tum.de

Contacts to this article:

Prof. Senthold Asseng
Technical University of Munich (TUM)
Director of the World Agricultural Systems Center
Hans Eisenmann Forum for Agricultural Sciences
Professorship of Digital Agriculture
Liesel-Beckmann-Str. 2
85354 Freising
Tel: +49 (0) 8161 71 2900
senthold.asseng(at)tum.de

Related articles at www.tum.de

Prof. Senthold Asseng

“Vertical farming will play a role in future food production”

Alternative production systems to provide the growing global population with healthy, nutritious and sustainably produced foodstuffs are currently gaining considerable attention. In this interview, Senthold Asseng,…

Prof. Caroline Gutjahr

Root symbiosis is regulated through nutrient status of plants

Phosphorus is one of the most important nutrients for plants. Among other functions, it is needed to create substances for the plant’s immune system, for the healthy development of seeds and for root growth. A team of…

Prof. Brigitte Poppenberger (re.) und ihre Doktorandin Adebimpe Adedeji-Badmus umgeben von Ebolo-Pflanzen in einem Gewächshaus der TUM School of Life Sciences.

More diversity for our farms and forks

As a contribution to increasing crop variety for improved food security in Subsaharan Africa, a leafy vegetable which is rich in vitamins and minerals shall be domesticated. At present, however, as highlighted by a research…

Besonders in den Sommermonaten werden viele Nutztiere im Freien gehalten. Unter besonderer Hitzeeinwirkung dehydrieren insbesondere Milchkühe schwer, wenn sie etwa 12 Prozent ihres Körpergewichts als Wasser verloren haben. Eine vermehrte natürliche Beschattung durch Bäume ist eine der Anpassungsstrategien an steigende Temperaturen im Bereich der Nutztierhaltung

At what temperature the weather becomes a problem

When extreme heat becomes more frequent and temperatures remain high for extended periods of time, as it is currently the case in Canada and the American Northwest, physiological stress increases in humans, animals and…

ears of maize plants

Climate-adapted plant breeding

Securing plant production is a global task. Using a combination of new molecular and statistical methods, a research team from the Technical University of Munich (TUM) was able to show that material from gene banks can be…

Maize

European and American maize: same but different

German researchers decoded the European maize genome. In comparison to North American maize lines, they discovered differences. For cultivation of maize in areas with low yields and for challenges imposed by the climate…

HSTS