TUM – Technical University of Munich Menu

Cause of early cellular dysfunction in Alzheimer’s disease recognized for the first time

Direct toxic action of beta-amyloid identified

Arthur Konnerth (left) and Benedikt Zott in front of the experimental setup.
Arthur Konnerth (left) and Benedikt Zott in front of the experimental setup.

Research news

Hyperactive neurons in specific areas of the brain are believed to be an early perturbation in Alzheimer's disease. For the first time, a team from the Technical University of Munich (TUM) was able to explain the reasons and mechanisms underlying this early and therefore important neuronal dysfunction. They found that the excitatory neurotransmitter glutamate persists for too long near active neurons. This causes a pathological overstimulation of those neurons – most likely contributing critically to impaired learning and memory loss in Alzheimer’s patients.

The brains of Alzheimer's patients who have already developed clinical symptoms contain large clumps of the protein beta-amyloid, known as plaques. Many therapeutic approaches focus on removing plaques, but such attempts have met with only limited success to date.

“It’s crucial that we detect and treat the disease much earlier. We therefore focused on hyperactive neurons, which occur at a very early stage – long before patients develop memory loss,” explains Professor Arthur Konnerth, Hertie Senior Professor of Neuroscience at the TUM. As a consequence of hyperactivation, connected neurons in the circuits constantly receive false signals, leading to impairments in signal processing.

Together with his doctoral student Benedikt Zott and the entire research team, Konnerth succeeded in identifying the cause and trigger of this early disturbance in the brain. The discovery may open the way to new therapeutic approaches. The study appeared in the journal Science.

Beta-Amyloid blockiert Glutamat-Wiederaufnahme

Nervenzellen im Hippocampus, einem Hirngebiet für Lernen und Gedächtnis, das früh von Alzheimer betroffen ist.
Nervenzellen im Hippocampus, einem Hirngebiet für Lernen und Gedächtnis, das früh von Alzheimer betroffen ist.
Image: Y. Zhang und A. Konnerth / TUM
Download high resolution image

Wenn Nervenzellen miteinander kommunizieren, nutzen sie Botenstoffe, sogenannte Neurotransmitter. Glutamat, eine der wichtigsten dieser Substanzen, aktiviert Nervenzellen. Dafür wird es in den Bereich zwischen zwei Nervenzellen, den synaptischen Spalt, abgegeben, wo es wirken kann. Anschließend müssen die Glutamat-Moleküle von dort wieder schnell entfernt werden, um die Wirkung zu beenden. Dieser Vorgang findet zum einen aktiv über sogenannte Pumpmoleküle statt, zum anderen passiv durch einfachen Transport des Glutamats entlang der Membranen.

Wie die Forscherinnen und Forscher herausfanden, befand sich bei den überaktiven Nervenzellen Glutamat zu lange in sehr hohen Konzentrationen im synaptischen Spalt. Sie konnten zeigen, dass bei diesen Nervenzellen der Transport des Hirnbotenstoffs gestört war. Der Grund hierfür waren beta-Amyloid-Moleküle, die die Nervenzellmembranen für den Transport von Glutamat blockierten. Sie verwendeten für den Nachweis dieses Mechanismus sowohl beta-Amyloid-Moleküle aus Patientenproben als auch Mausmodelle – mit dem gleichen Ergebnis.

Hinweis auf möglichst frühen Therapieansatz

Interessant war für das Team auch, dass diese Blockade schon von einer frühen löslichen Form des beta-Amyloids ausgelöst wurde und nicht von den verklumpten Plaques. Beta-Amyloid tritt in unterschiedlichen Formen auf: Es wird als einzelnes Molekül gebildet und formt dann zuerst lösliche Zweierkonstrukte (Dimere) und später lange Ketten, die die Plaques bilden. Im Falle der Glutamat-Blockade waren die Dimere der Auslöser.

„Unsere Daten liefern einen klaren Beweis für eine direkte toxische Wirkung einer bestimmten beta-Amyloid-Form, den Dimeren. Wir waren sogar in der Lage diesen Mechanismus zu erklären“, so Benedikt Zott, Erstautor der Studie. Dieses Wissen wollen die Forscherinnen und Forscher nun nutzen, um das Verständnis der zellulären Ursachen bei der Entstehung von Alzheimer weiter zu verbessern und so Therapiestrategien zu entwickeln, die früh im Krankheitsverlauf ansetzen.