TUM – Technische Universität München Menü
Blick in die Probenkammer der Positronenquelle. (Foto: Jakob Mayer / TUM)
Blick in die Probenkammer der Positronenquelle. (Foto: Jakob Mayer / TUM)
  • Forschung

Weltweit stärkste Positronenquelle am FRM II in Garching:

Mit Antiteilchen auf Fehlersuche

Die geheimnisvolle Antimaterie ist nicht nur exotisches Beiwerk in Kinofilmen wie „Illuminati“, sondern auch ein faszinierendes Wissenschaftsgebiet. An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München werden die Antiteilchen von Elektronen gewonnen, die so genannten Positronen, und das in der weltweit höchsten Intensität. Die knapp eine Milliarde Positronen pro Sekunde kommen in der Nano-Materialforschung zum Einsatz: Sie entdecken Fehlstellen im Atomgitter und können dabei einzelne Elemente präzise unterscheiden.

Während Tom Hanks auf der Suche nach Antimaterie aus dem Teilchenphysiklabor CERN in der Schweiz quer durch Rom jagen muss, hat Dr. Christoph Hugenschmidt am FRM II in Garching pro Sekunde eine Milliarde Antiteilchen zur Verfügung. Das Positron ist dabei so harmlos wie sein Gegenpart, das Elektron. NEPOMUC (NEutron-induced POsitron source MUniCh) hat der TUM-Physiker die Neutronen-induzierte Positronenquelle genannt. Zusammen mit der Universität der Bundeswehr München betreibt der TUM-Lehrstuhl für Experimentalphysik E 21 diese weltweit intensivste Positronenquelle.

Das Besondere an der Positronenquelle in Garching ist, dass die Teilchen sich im Ultrahochvakuum durch magnetische und elektrische Felder fast verlustfrei bis zu den fünf verschiedenen Experimentierstationen leiten lassen. „Den Wissenschaftlern, die ihre Experimente an der Positronenquelle des FRM II durchführen, stehen damit bis zu 1000 Mal mehr Positronen pro Sekunde zur Verfügung als in jedem anderen Labor der Welt“, sagt Hugenschmidt. Das spart wertvolle Experimentierzeit. Versuche mit Positronen, die sonst Wochen dauern, können am FRM II innerhalb von einigen Minuten oder Stunden durchgeführt werden. „Gleichzeitig haben wir die Empfindlichkeit gesteigert, und es lassen sich daher völlig neue Fragestellungen in der Grundlagenphysik beantworten“, zählt Hugenschmidt weitere Vorteile auf. So untersucht man derzeit das negativ geladene Positronium, ein Teilchen, das aus zwei Elektronen und einem Positron besteht. Bei den drei Teilchen, die sich gegenseitig umkreisen, interessiert vor allem das Dreikörperproblem, das schon Kepler und Copernicus aufwarfen: Wie verlaufen die Bahnen dreier Körper unter dem Einfluss ihrer gegenseitigen Anziehung?

Die Positronen werden indirekt aus Neutronen des Reaktors erzeugt. Das Herzstück der Positronenquelle besteht aus einer Struktur aus Kadmium und Platinfolien. Das Kadmium fängt die Neutronen ein und gibt dabei hochenergetische Gammastrahlung ab. Die Energie dieser elektromagnetischen Strahlung wird in Platin gemäß der Einsteinschen Äquivalenz von Masse und Energie E=mc2 in Masse umgewandelt. Dabei entstehen zu gleichen Teilen Materie und Antimaterie: Elektronen und Positronen. Um die Positronen möglichst lange zum Experimentieren zu nutzen, muss man sie von Materie fernhalten. Denn bei Kontakt mit einem Elektron zerstrahlen sie sofort.

Positronen werden außer für Grundlagenexperimente vor allem in der Materialforschung eingesetzt, weil sie nicht nur Defekte im Atomgitter erkennen, sondern auch Atomsorten unterscheiden können. Je nach Element zerstrahlen die Positronen bei der Berührung mit den Elektronen unterschiedlich. Die dabei messbare Gammastrahlung ist wie ein Fingerabdruck spezifisch für ein Element. Die Empfindlichkeit der Positronen wiesen die Forscher um Christoph Hugenschmidt nun in einem Versuch mit Aluminium und Zinn nach. Unter einer nur 200 Nanometer dünnen Schicht aus 500 Lagen Aluminium-Atomen wurde eine einzelne Lage aus Zinn-Atomen eingebettet. Trotzdem konnten die Positronen die Zinnschicht aufspüren.

Diese Messtechnik soll nun nicht nur Defekte auf atomarer Ebene zeigen, sondern wird zukünftig auf dotierte Halbleiter und metallische Werkstoffe angewandt werden, um darin kleinste Verunreinigungen sichtbar zu machen. Dazu entwickelt Hugenschmidt gerade neue Messapparaturen an der Positronenquelle des FRM II und unternimmt Experimente in Kooperation mit der Universität der Bundeswehr München, der Ludwig-Maximilians-Universität München und dem Max-Planck-Institut für Kernphysik in Heidelberg.

Originalpublikationen:


Unprecedented intensity of a low energy positron beam; C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, and K. Schreckenbach; Nucl. Instr. Meth. A 593 (2008) 616 – DOI: 10.1016/j.nima.2008.05.038

High elemental selectivity to Sn submonolayers embedded in Al using positron annihilation spectroscopy; C. Hugenschmidt, P. Pikart, M. Stadlbauer, and K. Schreckenbach; Phys. Rev. B77 (2008) 092105 – DOI: 10.1103/PhysRevB.77.092105

Bildmaterial:


http://mediatum2.ub.tum.de/node?cunfold=816691&dir=816691&id=816691


Kontakt:

Dr. Christoph Hugenschmidt
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1 - D 85748 Garching
Tel: +49 89 289 14609
E-MailInternet

Corporate Communications Center

Technische Universität München

Weitere Artikel zum Thema auf www.tum.de:

Dr. Eve Stenson demonstriert an Ersatzteilen, wie die Positronen-Falle aufgebaut ist. (Bild: Axel Griesch / IPP)

Positronen in der Falle

Erstmals ist es Wissenschaftlern der Technischen Universität München (TUM) und des Max-Planck-Instituts für Plasmaphysik (IPP) gelungen, verlustfrei Positronen in einen Magnetfeldkäfig zu bringen. Dies ist eine wichtige...

Thomas Gigl und Stefan Seidlmayer an der Positronenquelle NEPOMUC – Foto: Wenzel Schürmann / TUM

Löcher in der Elektrode

Akkus, deren Kathode aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium besteht, gelten derzeit als die leistungsfähigsten. Doch auch sie haben eine begrenzte Lebensdauer. Schon beim ersten Zyklus verlieren sie bis...

Gummibärchen auf dem Versuchsaufbau – Foto: Wenzel Schürmann / TUM

Gummibärchen unter Antiteilchen-Beschuss

Gelatine wird in der Pharmazie eingesetzt, um Wirkstoffe zu ummanteln. Sie schützt vor Oxidation und zu schneller Freisetzung. Einen wesentlichen Einfluss darauf haben feinste Poren im Material, doch die sind nur sehr...

Physiker Josef Lichtinger begutachtet die

Lithium im Gehirn

Experimente mit Neutronen an der Technischen Universität München (TUM) zeigen, dass sich in der weißen Gehirnsubstanz das Antidepressivum Lithium stärker anreichert als in der grauen. Das lässt vermuten, dass es anders...

Gitter aus Spinwirbeln

Magnetische Monopole löschen Daten

Ein vor 80 Jahren postuliertes physikalisches Phänomen könnte den entscheidenden Schritt zur Realisierung neuartiger, extrem kompakter und langlebiger Datenspeicher durch magnetische Wirbel liefern. Wissenschaftler der...

Metallisches Terbium. (Foto: Astrid Eckert / TUM)

Radionuklid-Therapie gegen kleine Tumore und Metastasen

Im Kampf gegen Krebs könnte der Medizin schon bald ein neuer Verbündeter zur Seite stehen: Terbium-161. Seine wichtigste Waffe: Konversions- und Auger-Elektronen. Aufbauend auf dem Radionuklid Terbium-161 haben...

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). (Foto: Andrea Voit / TUM)

Bund stärkt Neutronenforschung in Garching

Die wissenschaftliche Nutzung der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) durch deutsche und internationale Forscher wird für die nächsten zehn Jahre mit insgesamt 198 Millionen Euro vom Bundesministerium...

Prof. Dr. Pfleiderer bereitet eine Probe in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz vor. (Photo: Wenzel Schuermann / TUM)

Strom bewegt magnetische Wirbel

Schneller, kleiner und energiesparender sollen die Rechner der Zukunft sein. Dazu müssen die Daten schneller geschrieben und verarbeitet werden. Diesem Ziel sind Physiker der Technischen Universität München (TUM) und der...

Dreiachsen-Spektrometer PUMA im FRM II. (Foto: Wenzel Schuermann / TUM)

Supraleitung bei hohen Temperaturen

Magnetische Wechselwirkungen könnten bewirken, dass bestimmte Materialien Strom verlustfrei leiten, und zwar bei höheren Temperaturen als klassische Supraleiter wie etwa Blei. Dazu haben Wissenschaftler vom...

Neutronenstrahlung eröffnet wertvolle Einblicke in die Renaissance-Köpfchen des Florentiner Paradiestores. (Foto: Ralf Schulze / TUM)

Prophet unter der Neutronenlupe

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein. So werden an der...

Neutronen-Radiografie von Wasserablagerungen in der Isolierung von Flugzeugen. (Bild: casas)

Dem Wasser in Flugzeugen auf der Spur

Wenn es beim Landeanflug von der Decke der Flugzeugkabine tropft, dann ist das nur eine von vielen unangenehmen Folgen von zu viel Feuchtigkeit in der Isolierung des Flugzeugrumpfes. Physiker der Technischen Universität...

Römische Merkur Statuette. (Foto: Martin Mühlbauer)

Nippes aus dem alten Rom

Einen Blick in eine römische Gottheit hinein warfen jetzt Physiker an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM). Sie untersuchten für die Archäologische...

Sebastian Mühlbauer bei der Vorbereitung eines Experiments

Magnetische Wirbelfäden in der Elektronensuppe

Physiker der Technischen Universität München (TUM) und der Universität zu Köln haben in der metallischen Verbindung Mangansilizium eine neue Form magnetischer Ordnung entdeckt. Das Gitter aus magnetischen Wirbelfäden, über...

Uwe Wasmuth im FRM II mit seinem Werkstück. (Foto: TU München)

Spannungen in Stahl gegossen

Spannungen in Metallen führen zu Verformungen und schlimmstenfalls zu Rissen im Material. Betroffen von solchen Eigenspannungen sind vor allem Werkstücke, die aus zwei verschiedenen Metallen bestehen, wie etwa...

Ein glühender Metalltropfen schwebt zwischen zwei Spulen im Neutronenstrahl. (Foto: Andrea Voit/TUM)

Schwerelose Experimente mit geschmolzenem Metall

Untersuchungen, die sonst nur in der Schwerelosigkeit des Weltalls gelingen, führt Professor Andreas Meyer vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln mit einem neuen Messverfahren derzeit an der...

3D-Tomografie einer Säugetierlunge. (Bild: Robert Metzke, Burkhard Schillinger, TU München)

Neue Strategien könnten Tausenden das Leben retten

Aktuellen Schätzungen zufolge werden in Europa jedes Jahr mehr als 100.000 Patienten mit akutem Lungenversagen intensivmedizinisch behandelt. Müssen Patienten mehrere Tage künstlich beatmet werden, sinkt die Überlebensrate...

Ein Zylinder aus mit Neutronen dotiertem Silizium. (Foto: W. Schürmann, TU München)

Halbleiter für energiesparende Hochleistungselektronik

Zwischen Thomas Alva Edison und George Westinghouse tobte um 1880 ein erbitterter Streit: Edison setzte auf Gleichstrom, Westinghouse wollte Wechselstrom-Netze einführen. Er hatte erkannt, dass es viel praktischer war, den...

Reaktorbecken im FRM II. (Foto: Andreas Heddergott)

TUM-Forschungsreaktor liefert die ersten Neutronen

Die Forschungs-Neutronenquelle FRM-II der Technischen Universität München in Garching hat heute die ersten Neutronen erzeugt. "Damit ist die Inbetriebsetzung der weltweit modernsten Neutronenquelle in das entscheidende...