TUM – Technische Universität München Menü
An Fledermäusen der Art "Kleine Lanzennase" untersuchte das Team von Dr. Uwe Firzlaff die räumliche Orientierung.
An Fledermäusen der Art "Kleine Lanzennase" untersuchte das Team von Dr. Uwe Firzlaff die räumliche Orientierung. (Bild: A. Zahn / Koordinationsstelle für Fledermausschutz, LMU)
  • Forschung

Studie untersucht, wie sich Fledermäuse räumlich orientieren

Sicherer Flug mit Zoom-Effekt

Fliegen ohne zu sehen: Fledermäuse orientieren sich mithilfe von Schallwellen und der vielfältigen Echos, die ihre Umgebung zurückwirft. Ihr inneres Navigationssystem erweist sich dabei als ausgesprochen flexibel, wie eine Studie in Nature Communications zeigt: Je näher Fledermäuse an einem Objekt vorbeifliegen, umso mehr Neuronen sind in dem Gehirnareal aktiv, das die akustischen Signale räumlich verarbeitet. Diese Informationen helfen den Flugkünstlern, blitzschnell zu reagieren und Hindernissen auszuweichen.

Nachtaktive Fledermäuse haben sich perfekt auf ein Leben ohne Licht eingestellt. Sie senden Ortungslaute aus, um aus dem zeitverzögerten Echo die Entfernung zu einem Hindernis oder Beutetier zu berechnen. In ihrem Gehirn existiert eine räumlich aufgelöste Karte für unterschiedliche Echolaufzeiten. Wie eine Studie der Technischen Universität München (TUM) erstmals zeigt, passt sich diese Karte dynamisch an äußere Bedingungen an.

Nahe Objekte erscheinen größer

Fliegen die Tiere eng an einem Hindernis vorbei, feuern mehr Neuronen als bei einem sicheren Abstand. Der Gegenstand erscheint auf der Gehirnkarte dann überproportional groß - als ob er herangezoomt würde. „Die Karte funktioniert ähnlich wie ein Navigationssystem im Auto und zeigt der Fledermaus den Weg“, erklärt Studienleiter Dr. Uwe Firzlaff vom TUM-Lehrstuhl für Zoologie. „Der entscheidende Unterschied: Wenn sich das Tier auf Kollisionskurs befindet, schlägt das Gehirn Alarm, indem es nahe Objekte stärker abbildet als entfernte.“

Fledermäuse stellen ihre Flugmanöver ständig auf neue Situationen ein, um Gebäuden, Bäumen oder anderen Tieren auszuweichen. Dabei ist auch die seitliche Positionsbestimmung wichtig. Daher nutzen die Tiere neben der Echolaufzeit zusätzliche räumliche Informationen. "Die Fledermäuse werten die Eigenbewegung aus und gleichen sie mit dem seitlichen Abstand auf Gegenstände ab", erläutert der Forscher.

Gehirn verarbeitet komplexe räumliche Informationen

Zusätzlich zur Laufzeit berücksichtigen die Tiere die Richtung, aus der das Echo zurückgeworfen wird. Außerdem vergleichen sie die Lautstärke ihrer Ruflaute mit den reflektierten Schallwellen und werten das Wellenspektrum des Echos aus. "Unsere Untersuchungen führen zu dem Schluss, dass Fledermäuse auf ihrer akustischen Karte wesentlich mehr räumliche Informationen abbilden als nur die Echolaufzeit.“

Die Ergebnisse erklären, wie sich schnelle Reaktionen auf äußere Reize in den Nervenzellen widerspiegeln: Im Gehirn der Fledermäuse vergrößert sich das aktive Areal, um relevante Informationen darzustellen. „Damit“, so Firzlaff abschließend, "haben wir möglicherweise einen grundlegenden Mechanismus entdeckt, wie Wirbeltiere ihr Verhalten flexibel auf wechselnde Umgebungen anpassen können."

Die Studie wurde aus Fördermitteln (FI1546/4) der Deutschen Forschungsgemeinschaft (DFG) finanziert.


Publikation:
Echo-acoustic flow dynamically modifies the cortical map of target range in bats; Sophia K. Bartenstein, Nadine Gerstenberg, Dieter Vanderelst, Herbert Peremans & Uwe Firzlaff; Nature Communications, DOI: 10.1038/ncomms5668

Kontakt:
Dr. Uwe Firzlaff
Technische Universität München
Lehrstuhl für Zoologie
Tel: +49 8161 71-2803
uwe.firzlaff(at)wzw.tum.de
www.zoologie.wzw.tum.de

Corporate Communications Center

Technische Universität München Barbara Wankerl
barbara.wankerl(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören – Bild: Frieder Mugele, Universität Twente

Ein Tunnel im Kopf

Menschen, wie fast alle auf dem Land lebenden Wirbeltiere, nutzen den Zeitunterschied, mit dem ein Schallsignal an beiden Ohren ankommt, zur Richtungsbestimmung. Bei Fröschen, Echsen und Vögeln ist der Ohrabstand hierfür zu...

Vögel können auch ohne Außenohren hören - warum, hat jetzt ein Forschungsteam der TUM herausgefunden.

Warum Vögel keine Ohrmuscheln brauchen

Im Gegensatz zu Säugetieren haben Vögel keine Außenohren. Der äußere Teil der Ohren hat eine wichtige Funktion: Tiere können damit Laute identifizieren, die aus unterschiedlichen Höhen kommen. Aber auch Vögel hören, ob sich...

Die Abbildung zeigt einen peripheren Nerven. Die neuromuskulären Endplatten erscheinen in rot, die Mitochondrien der Nervenzellen enthalten einen fluoroszenten Redoxsensor (grün). (Bild: M. Kerschensteiner und T. Misgeld)

Neuroimaging: Live-Schaltung in die Zelle

Dank einer neuen Kombination von Biosensoren mit mikroskopischen Methoden lassen sich Redoxsignale in Körperzellen jetzt besser darstellen. Wissenschaftler der Technischen Universität München (TUM) und der...

Prof. Werner Hemmert, Leiter des Fachgebiets Bioanaloge Informationsverarbeitung an der TUM - Foto: Astrid Eckert/TUM

Hören besser verstehen

Wenn Kinder sprechen lernen, sind sie auf ein funktionsfähiges Gehör angewiesen. Hochgradig schwerhörigen Menschen können sogenannte Cochlea-Implantate das Hören wieder ermöglichen, indem sie den Hörnerv elektrisch erregen....

Wie entstehen die langsame Gehirnwellen im Schlaf? Für ihre Versuche haben die Wissenschaftler lichtsensitive Moleküle in spezifische Neuronen (grün im Bild) eingebracht, die auf Licht reagieren.

Faszinierender Rhythmus: „langsame Wellen“ im Gehirn

Neue Forschungsergebnisse zeigen, wo und wie „langsame Wellen“ im Gehirn entstehen. Diese rhythmischen Signalimpulse, die das Gehirn während des Tiefschlafs einmal pro Sekunde durchlaufen, spielen vermutlich eine wichtige...

Eccerobot, ein Prototyp für neurorobtische Systeme, wie sie zur Überprüfung der im Human Brain Project entwickelten Modelle eingesetzt werden sollen. Bild: TUM

Das menschliche Gehirn verstehen – The Human Brain Project

Die TU München ist an einem der ersten beiden europäischen Großforschungsprojekte beteiligt, die unter dem neuen Format „European Future and Emerging Technologies (FET) Flagship“ erfolgreich waren. Unter Führung der...