TUM – Technische Universität München Menü
Dr. Stefan Seidlmayer mit Dr. Petra Kudejová am Instrument PGAA des FRM II - Bild: Claudia Niiranen / TUM
Dr. Stefan Seidlmayer mit Dr. Petra Kudejová am Instrument PGAA des FRM II - Bild: Claudia Niiranen / TUM
  • Forschung

Neutronen klären Alterungsprozess in Lithiumionen-AkkusEwige Jugend für Batterien?

Ein wichtiges Problem von Lithiumionen-Akkus ist ihre Alterung. Sie mindert die erzielbare Speicherkapazität erheblich. Bisher ist nur wenig darüber bekannt, wie es dazu kommt. Wissenschaftler des Lehrstuhls für Technische Elektrochemie und der Forschungs-Neutronenquelle (FRM II) der Technischen Universität München (TUM) sind der Aufklärung der Ursachen in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Lithiumionen-Akkus mit Graphit-Anode sind eine relative junge Entwicklung. Erst 1989 wurden sie zum Patent angemeldet und sind seit 1991 in elektrischen Geräten im Einsatz. Seither haben sie einen weltweiten Siegeszug angetreten und dienen heute nicht nur in elektrischen Kleingeräten sondern auch Elektroautomobilen, Flugzeugen und sogar in Lokomotiven. Zukünftig sollen sie auch als große Zwischenspeicher mit Megawatt-Kapazitäten dienen.

Einen ersten starken Kapazitätsverlust erleidet ein Akku mit Graphit-Anode bereits beim ersten Ladezyklus der Zelle, dem Formierungsschritt. Hier verliert er bis zu 10 Prozent seiner Kapazität. Bei jedem weiteren Lade- und Entladevorgang sinkt die Kapazität weiter, wenn auch nur geringfügig. Auch bei bloßer Lagerung, vor allem bei Temperaturen über der Raumtemperatur, geht weitere Kapazität verloren.

Für diese Alterungseffekte hat die Physik zwar mehrere Ideen, aber noch keine endgültige Erklärung gefunden. TUM-Wissenschaftler des Lehrstuhls für Technische Elektrochemie und aus dem FRM II sind dem in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Spurensuche mit Röntgenstrahlung und Neutronen

Um den Alterungsmechanismus zu verstehen und die Gründe dafür herauszufinden, kombinierten die TUM-Wissenschaftler elektrochemische Untersuchungen mit so unterschiedlichen Messmethoden wie Röntgenstreuung, Impedanzmessungen und Prompte Gamma-Aktivierungsanalyse (PGAA).

Mit diesen analysierten sie das Verhalten von Akkus mit Graphit-Anode und Nickel-Mangan-Cobalt-Kathode, sogenannte NMC-Zellen, bei verschiedenen Temperaturen. NMC-Zellen sind beliebt in der Elektromobilität, denn sie besitzen eine hohe Kapazität und halten theoretisch Ladespannungen von bis zu knapp fünf Volt aus. Bei Spannungen über 4,4 Volt nimmt jedoch die Alterung stark zu.

Mit Hilfe der Röntgenstreuung untersuchten die Wissenschaftler den Verlust an aktivem Lithium über mehrere Ladezyklen. Impedanzmessungen der Akkuzellen dienten dazu, den zunehmenden Widerstand zu erfassen. Die Aktivierungsanalyse mit Neutronen schließlich half, die extrem geringen Mengen an abgeschiedenem Übergangsmetall auf den Graphitelektroden sicher zu bestimmen.

Mechanismen für den Kapazitätsverlust

Ursache für den deutlichen Kapazitätsverlust beim Formierungsschritt ist der Aufbau einer Passivierungsschicht an der Anode. Diese verbraucht aktives Lithium, schützt jedoch danach den Elektrolyten vor Zersetzung an der Anode.

Für den Kapazitätsverlust bei laufendem Betrieb fand die Forschergruppe zwei wesentliche Mechanismen: Das aktive Lithium in der Zelle wird durch verschiedene Nebenreaktionen nach und nach verbraucht und steht damit nicht mehr zur Verfügung. Der Prozess ist stark temperaturabhängig: Bei 25ºC ist die Wirkung noch relativ gering und wird bei 60ºC recht hoch.

Beim Laden und Entladen der Zellen bei erhöhter Ladespannung (4,6 V) kommt es hingegen zu einem starken Anwachsen des Zellwiderstandes. Die auf der Anode abgeschiedenen Übergangsmetalle erhöhen die Leitfähigkeit der Passivierungsschicht für Elektronen und führen damit zu verstärkter Zersetzung des Elektrolyten.

Wege zu besseren Lithiumionen-Akkus

Nach dem Prinzip von Versuch und Irrtum fanden die Batteriehersteller bereits gute Verhältnisse von Elektrodenmaterial und Lithiummenge. „Mit den von uns gewonnenen Erkenntnissen lassen sich nun die Einzelprozesse gezielt weiter verbessern“, sagt Irmgard Buchberger, Doktorandin am Lehrstuhl für Technische Elektrochemie der TU München. „Möglich sind hier beispielsweise Additive, mit denen der Aufbau der Passivierungsschicht verbessert werden kann oder Modifikationen der Kathodenoberfläche.“

Die Arbeiten wurden unterstützt mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts ExZellTUM. Die Prompte Gamma Aktivierungsanalyse wurde in Kooperation mit dem Heinz Maier-Leibnitz Zentrum (MLZ) am Instrument PGAA der Forschungs-Neutronenquelle FRM II der Technischen Universität München durchgeführt.

Publikation:

I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger; Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance; Journal of The Electrochemical Society, 162, A2737 (2015); DOI: 10.1149/2.0721514jes 

Kontakt:

Prof. Dr. Hubert Gasteiger
Technische Universität München
Lehrstuhl für Technische Elektrochemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13679E-MailWeb

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Montage einer Akku-Zelle im Instrument ANTARES des FRM II. (Foto: Wenzel Schürmann / TUM)

Schnelleres Befüllen von Lithiumionen-Akkus

Entwickler von Bosch und Wissenschaftler der Technischen Universität München (TUM) haben Neutronen eingesetzt, um das Befüllen eines Lithiumionen-Akkus für Hybridautos mit Elektrolytflüssigkeit zu analysieren. Ihr...

Pinkfarbenes, mikrokristallines Lithium-Kobaltphosphat. (Foto: Andreas Battenberg / TUM)

Elektrodenmaterialien aus der Mikrowelle

Power für unterwegs ist gefragt: Je leistungsfähiger der Akku, desto größer die Reichweite von Elektroautos und desto länger die Betriebszeit von Handys und Laptops. Dr. Jennifer Ludwig von der Technischen Universität...

Eine Glaskeramik-Membran, die mit Aluminium und Kunststoff beschichtet ist, lässt nur Lithium-Ionen durch. Für alle anderen Bestandteile der Elektrolytflüssigkeit ist sie undurchlässig – Foto: Monika Weiner / TUM

Mehr Spannung in der Akku-Forschung

Im Kleinen haben sich die wieder aufladbaren Lithium-Ionen-Akkus längst bewährt: Seit Jahren versorgen sie Milliarden portabler Geräte zuverlässig mit Energie. Auch die Hersteller von Elektroautos und Stromspeichern setzen...

Mit geeigneten Polymeren gefüllt, werden aus der hochporösen Germaniumschicht hybride Solarzellen – Foto: Andreas Battenberg / TUM

Neue Wege zu hybriden Solarzellen

Mit einem neuen Verfahren stellen Forscher der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) hauchdünne, robuste und gleichzeitig hochporöse Halbleiterschichten her. Ein viel...

Acht Racks mit jeweils 13 Modulen zu je 192 Batteriezellen liefern eine Speicherkapazität von 200 kWh - Bild: Andreas Heddergott / TUM

Energy Neighbor geht in Betrieb

Transportverluste und Schwankungen im Stromnetz ließen sich reduzieren, wenn erneuerbare Energien lokal gespeichert werden könnten. Forscher der Technischen Universität München (TUM), der Kraftwerke Haag GmbH, der VARTA...

Forschungsproduktionsanlage für Lithium-Ionen-Zellen

Asiatische Firmen sichern sich Vormacht bei Energiespeichern

Die Zahl der Patentanmeldungen für elektrochemische Energiespeicher-Technologien ist in den vergangenen Jahren stark gestiegen. Die mit großem Abstand meisten Schutzrechte beantragten die Entwickler für Lithium-Batterien....

Neue Energiespeicher für Elektrofahrzeuge

Bis zum Jahr 2020 sollen mindestens 1 Million Elektrofahrzeuge auf deutschen Straßen fahren. Neuartige Batterie-Technologien spielen dafür eine Schlüsselrolle. Um die Forschungsaktivitäten und den Technologietransfer auf...