TUM – Technische Universität München Menü
Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer – Bild: Federico Calle Vallejo / Univ. Leiden
Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer – Bild: Federico Calle Vallejo / Univ. Leiden
  • Forschung

Kupferschicht unter der Oberfläche steigert Aktivität von Platin-Elektroden

Effizienz der Wasser-Elektrolyse verdoppelt

Die Wasser-Elektrolyse konnte sich als Verfahren für die Produktion von Wasserstoff bislang nicht durchsetzen. Zu viel Energie geht in dem Prozess verloren. Mit einem Trick hat ein Team aus Forschern der Technischen Universität München (TUM), der Ruhr-Universität Bochum und der Universität Leiden die Effizienz der Reaktion nun verdoppelt.

Noch müssen bei Stromüberschuss Windräder vom Netz genommen werden. Als Alternative wird immer wieder die Spaltung von Wasser in Wasserstoff und Sauerstoff genannt, die mit der überschüssigen Energie betrieben werden könnte. Doch bisher wird Wasserstoff industriell vor allem aus Erdgas hergestellt. Ein Prozess, bei dem zwar große Mengen des Treibhausgases Kohlendioxid freigesetzt werden, der jedoch immer noch billiger ist als die Wasser-Elektrolyse.

Die Elektroden für die Wasser-Elektrolyse enthalten üblicherweise Platin als Katalysator, um die Umsetzung von Wasser zu Wasserstoff und Sauerstoff zu beschleunigen. Damit die Reaktion möglichst effizient abläuft, dürfen Zwischenprodukte dabei weder zu stark noch zu schwach an der Katalysatoroberfläche haften.

Herkömmliche Elektroden binden Zwischenprodukte zu stark

Das Team um Prof. Dr. Aliaksandr Bandarenka vom Lehrstuhl für Physik der Energieumwandlung und -speicherung der TU München und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie berechnete nun, wie stark die Zwischenprodukte an den Elektroden haften sollten, um eine möglichst effiziente Reaktion zu erlauben. Die Analyse ergab, dass herkömmlichen Elektroden aus Platin, Rhodium und Palladium die Zwischenprodukte etwas zu stark binden.

Die Forscher modifizierten daher die Eigenschaften der Platin-Katalysatoroberfläche, indem sie eine Schicht aus Kupferatomen einfügten. Mit dieser Zusatzschicht erzeugte das System doppelt so viel Wasserstoff wie mit einer reinen Platinelektrode. Allerdings nur, wenn die Forscher die Kupferschicht direkt unter der obersten Lage der Platinatome einbrachten. Die Gruppe beobachtete zudem, dass die Elektroden mit der Kupferschicht langlebiger waren, zum Beispiel widerstandsfähiger gegen Korrosion.

Wasser-Elektrolyse könnte mit überschussstrom betrieben werden

Nur vier Prozent des weltweit produzierten Wasserstoffs entstehen bislang durch die Elektrolyse von Wasser. Weil die verwendeten Elektroden nicht effizient genug sind, lohnt sich eine großflächige Anwendung nicht. „Bisher wird Wasserstoff überwiegend aus fossilen Brennstoffen gewonnen, wobei eine hohe Menge CO2 freigesetzt wird“, sagt Wolfgang Schuhmann. „Es wäre ein großer Schritt in Richtung klimaschonender Energieumwandlung, wenn wir Wasserstoff stattdessen mittels Elektrolyse gewinnen würden. Dafür könnten wir den Überschussstrom zum Beispiel aus der Windkraft nutzen.“

„Darüber hinaus ermöglicht uns die Forschung an dieser Reaktion zu testen, wie gut wir Katalysatoroberflächen designen können, indem wir unterschiedliche Metallatome präzise positionieren,“ ergänzt Aliaksandr Bandarenka. „Dieses Wissen könnte auch vielen anderen katalytischen Prozessen zugute kommen.“Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen der Exzellenzcluster RESOLV und Nanosystems Initiative Munich (NIM). Weitere Unterstützung kam von der Helmholtz-Energie-Allianz „Stationäre elektrochemische Speicher und Wandler“.

Publikation:

J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A. S. Bandarenka: Making the hydrogen evolution reaction in polymer electrolyte membrane electrolyzers even faster; Nature Communications, 10.03.2016 – DOI: 10.1038/NCOMMS10990

Kontakt:

Prof. Dr. Aliaksandr S. Bandarenka
Technischen Universität München
Physik der Energiewandlung und -speicherung
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12531E-MailWeb

Corporate Communications Center

Technische Universität München Julia Weiler (RUB) / Andreas Battenberg (TUM)
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Windräder, Solarmodule und Wasserstoffspeicher

Wie „Power-to-Gas“ umweltfreundlich und rentabel wird

Wasserstoff könnte schon heute mit Strom aus Windkraft profitabel produziert werden. Bislang galt diese umweltfreundliche „Power-to-Gas“-Methode als unrentabel. Ökonomen der Technischen Universität München (TUM) und der...

Der Helixnebel, 700 Lichtjahre von der Erde entfernt. Der Cluster ORIGINS erforscht die Entstehung des Universums und des ersten Lebens. (Bild: ESO/VISTA/J. Emerson)

TUM mit vier Exzellenzforschungsclustern erfolgreich

Abermals startet die Technische Universität München (TUM) erfolgreich in die hochwettbewerbliche Exzellenzinitiative des Bundes und der Länder. Vier Forschungscluster der TUM und ihrer Kooperationspartner werden in den...

Jonas Pfisterer und Yunchang Liang am Rastertunnel-Mikroskop im Labor der Arbeitsgruppe von Prof. Bandarenka, Professur für Physik der Energiewandlung und -speicherung der TU München. (Bild: Wenzel Schürmann / TUM)

Chemische Hotspots

Chemie live: Mit einem Rastertunnelmikroskop konnten Forscher an der Technischen Universität München (TUM) erstmals die Aktivität von Katalysatoren während einer chemischen Reaktion detailgenau sichtbar machen. Die...

Das Zentralinstitut für Katalyseforschung der TUM, Ostansicht - Bild: Andreas Heddergott / TUM

TUM eröffnet Zentralinstitut für Katalyseforschung

Mit dem heute eröffneten TUM Catalysis Research Center (CRC) setzt die Technische Universität München (TUM) einen Akzent in der internationalen Katalyseforschung. Wissenschaftler aus fünf Fakultäten sowie industrielle...

Andrew Crampton und Marian Rötzer an ihrer Vakuum-Anlage zur Herstellung ultrakleiner Katalysatorpartikel - Foto: Andreas Heddergott / TUM

Extrapolieren verboten

Zur Herstellung von Margarine werden jedes Jahr Millionen Tonnen ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff umgesetzt. Auf der Suche nach besseren Katalysatoren für solche als Hydrierung bezeichneten...

Die unterschiedliche Zahl gleichartiger Nachbarn hat einen wichtigen Einfluss auf die katalytische Aktivität von Oberflächenatomen eines Nanopartikels – Bild: David Loffreda, CNRS, Lyon

Schnellere Entwicklung – bessere Katalysatoren

Die Reinigung von Autoabgasen ist eines der bekanntesten katalytischen Verfahren. Doch nahezu die gesamte chemische Industrie basiert auf katalytischen Reaktionen. Das Katalysatordesign spielt daher eine Schlüsselrolle bei...

Kobalthaltiger Katalysator zur Umwandlung von Kohlendioxid in Methan – Bild: Andreas Battenberg / TUM

Klimakiller als Klimaretter

Schieben sich Wolken vor die Sonne, geht die Solarstromproduktion schlagartig zurück, weht der Wind nicht, liefern die Windparks keine Energie. Umgekehrt gibt es bereits jetzt Tage, an denen Windkraftwerke abgeschaltet...