TUM – Technische Universität München Menü
Brücken aus den verschlungenen Luftwurzeln des Gummibaums Ficus elastica sind mechanisch äußerst stabil.
Brücken aus den verschlungenen Luftwurzeln des Gummibaums Ficus elastica sind mechanisch äußerst stabil.
Bild: F. Ludwig
  • Forschung
  • Lesezeit: 3 MIN

Mit alten indischen Bautechniken moderne Städte klimafreundlich gestaltenLebende Brücken

Dichte, feuchte Laubwälder, durch den Monsun anschwellende Flüsse und tiefe Schluchten – im indischen Staat Meghalaya vermodern Holzbrücken leicht oder werden von den Fluten weggerissen. Auch Brücken aus Stahl und Beton kommen hier an ihre Grenzen. Brücken aus lebenden Baumwurzeln überdauern hingegen Jahrhunderte. Prof. Ferdinand Ludwig von der Technischen Universität München (TUM) hat diese besonderen Bauwerke untersucht und schlägt vor, die spezielle Bautechnik in die moderne Architektur zu integrieren.

Vom nordindischen Meghalaya-Plateau führen unzugängliche Täler und Schluchten in die weiten Flächen Bangladeschs. In den Monsunmonaten schwellen die Gebirgsbäche in den Wäldern zu wilden Strömen an. Um diese überwinden zu können, bauten schon die indigenen Khasi- und Jaintia-Völker ihre Brücken aus den lebenden Luftwurzeln des Gummibaums Ficus elastica. „Solche stabilen Brücken aus ineinander verschlungenen Wurzeln können mehr als 50 Meter lang und mehrere Hundert Jahre alt werden“, sagt Ferdinand Ludwig, Professor für Green Technologies in Landscape Architecture an der TUM.

Gemeinsam mit Thomas Speck, Professor für Botanik an der Albert-Ludwigs-Universität Freiburg hat er 74 solcher lebenden Brücken analysiert. „In den Medien und auf Blogs sind die lebenden Meghalaya-Brücken schon viel besprochen worden, wissenschaftliche Untersuchungen gab es bislang allerdings wenige“, sagt Ludwig. „Außerdem war das Wissen um die alten Bautechniken bislang kaum schriftlich dokumentiert“, fügt Wilfrid Middleton von der Fakultät für Architektur an der TUM hinzu. Die Forscher führten Interviews mit den Brückenbauern und -bauerinnen, um den Bauprozess besser zu verstehen. Um einen Überblick über die komplexe Wurzelstruktur zu gewinnen, machten sie mehrere tausend Fotos und erstellten daraus 3D-Modelle. Darüber hinaus kartierte das Team die Brücken erstmals.

Eine Brücke, die sich selbst baut

„Üblicherweise beginnt der Bauprozess mit einer Pflanzung: Wer eine Brücke plant, pflanzt einen Setzling des Ficus elastica an einem Flussufer oder am Rand einer Schlucht ein. Zu einem bestimmten Zeitpunkt ihres Wachstums entwickelt die Pflanze Luftwurzeln“, sagt Speck. Die Luftwurzeln werden dann um eine Hilfskonstruktion aus Bambusstangen oder Palmenstämmen geschlungen und horizontal über den Fluss geleitet. Wenn die Wurzeln bis ans andere Ufer gewachsen sind, werden sie dort eingepflanzt. Sie entwickeln kleinere Tochterwurzeln, die ebenfalls an das Ufer gelenkt werden, wo sie eingepflanzt wurden. Durch das stetige Pflanzenwachstum und verschiedene Schlingtechniken bilden die Wurzeln des Ficus elastica hochkomplexe Strukturen, die den Brücken eine große mechanische Stabilität verleihen. Immer wieder werden die neu wachsenden Wurzeln in die bereits bestehende Struktur eingearbeitet.

Eine wichtige Rolle spielen die Eigenschaften des Ficus elastica: „Die Wurzeln reagieren auf mechanische Belastungen mit einem sekundären Wurzelwachstum. Außerdem sind die Luftwurzeln zu Verwachsungen fähig: Bei Verletzungen kommt es zur sogenannten Überwallung und Kallusbildung, ein Prozess, den man auch vom Wundverschluss bei Bäumen kennt. So können sich zum Beispiel zwei Wurzeln, die zusammengepresst werden, miteinander verbinden und verwachsen“, sagt Speck. Gebaut und instandgehalten werden die Brücken von Einzelpersonen, Familien oder auch mehreren Dorfgemeinschaften, die die Brücke nutzen. „Die lebenden Brücken sind also zum einen eine menschengemachte Technik, zum anderen aber auch eine ganz spezielle Form der Kultivierung einer Pflanze“, sagt Speck.

  • Die sogenannten Meghalaya-Brücken führen teilweise über tiefe Schluchten. Viele werden durch Geländer und Handläufe aus den Luftwurzeln abgesichert.
    Die sogenannten Meghalaya-Brücken führen teilweise über tiefe Schluchten. Viele werden durch Geländer und Handläufe aus den Luftwurzeln abgesichert. Bild: F. Ludwig
  • Eine junge und eine etwas ältere Luftwurzel wurden zu einem Netzwerk verknotet, wodurch sie sich verkürzen und straffen. Später werden die Wurzeln an dieser Stelle miteinander verwachsen.
    Eine junge und eine etwas ältere Luftwurzel wurden zu einem Netzwerk verknotet, wodurch sie sich verkürzen und straffen. Später werden die Wurzeln an dieser Stelle miteinander verwachsen. Bild: F. Ludwig
  • Prof. Ferdinand Ludwig, Begründer der Baubotanik, verschraubt zwei Bäume, damit sie miteinander verwachsen.
    Prof. Ferdinand Ludwig, Begründer der Baubotanik, verschraubt zwei Bäume, damit sie miteinander verwachsen. Bild: U. Benz / TUM
  • Verwachsung von zwei Baumstämmen, ähnlich der Verwachsung bei den Baumwurzeln des Ficus elastica.
    Verwachsung von zwei Baumstämmen, ähnlich der Verwachsung bei den Baumwurzeln des Ficus elastica. Bild: U. Benz / TUM
  • Prof. Ferdinand Ludwig war beteiligt am Entwurf des House of Future in Berlin. Die baubotanische Fassade des Gebäudes schafft ein angenehmes Klima – im Sommer durch Schatten und Verdunstungskühlung, im Winter nach dem Laubfall durch passive Solargewinne.
    Prof. Ferdinand Ludwig war beteiligt am Entwurf des House of Future in Berlin. Die baubotanische Fassade des Gebäudes schafft ein angenehmes Klima – im Sommer durch Schatten und Verdunstungskühlung, im Winter nach dem Laubfall durch passive Solargewinne. Bild: ludwig.schönle
  • In Nagold wurde bereits ein Projekt der Baubotanik umgesetzt: Das Gebäude tritt durch die Platanenfassade weniger als Gebäude denn als Baum in Erscheinung und wird als Lücke im Stadtraum wahrgenommen.
    In Nagold wurde bereits ein Projekt der Baubotanik umgesetzt: Das Gebäude tritt durch die Platanenfassade weniger als Gebäude denn als Baum in Erscheinung und wird als Lücke im Stadtraum wahrgenommen. Bild: ludwig.schönle

Bauen für nachfolgende Generationen

Bis eine lebende Brücke aus Ficus elastica fertig ist, vergehen Jahrzehnte, wenn nicht Jahrhunderte. An ihrem Bau beteiligen sich oftmals mehrere Generationen. „Die Brücken sind ein einmaliges Beispiel für vorausschauendes Bauen. Davon können wir viel lernen: Wir stehen heute vor Umweltproblemen, die nicht nur uns betreffen, sondern vor allem nachfolgende Generationen. Dieses Thema sollten wir angehen wie die Khasi“, sagt Ludwig.

Lebende Gebäude könnten Städte abkühlen

Die Erkenntnisse über die alten Techniken der indigenen Völker könnten dabei helfen, die moderne Architektur weiterzuentwickeln, sagt Ludwig, der selbst Architekt ist. In sein Planen und Bauen bezieht er Pflanzen bereits als lebende Baustoffe mit ein. 2007 begründete er mit diesem Ansatz ein neues Forschungsgebiet: Die Baubotanik.

Indem Pflanzen ins Bauen integriert werden, könnten wir uns besser an die Folgen des Klimawandels anpassen, erklärt er: „Stein, Beton und Asphalt heizen sich bei hohen Temperaturen schnell auf, besonders in den Städten entsteht Hitzestress. Pflanzen sorgen für Kühlung und ein besseres Klima in der Stadt. Mit der Baubotanik muss nicht extra Raum für die Pflanzen geschaffen werden. Sie sind integraler Bestandteil der Bauwerke.“

Publikationen:

Ludwig, F., Middleton, W., Gallenmüller, F. et al. Living bridges using aerial roots of ficus elastica – an interdisciplinary perspective. Scientific Reports 9, 12226 (2019). DOI: 10.1038/s41598-019-48652-w

Corporate Communications Center

Technische Universität München Lisa Pietrzyk
lisa.pietrzyk(at)tum.de

Kontakte zum Artikel:

Weitere Artikel zum Thema auf www.tum.de:

Hermann Kaufmann ist seit 2002 Professor für Entwerfen und Holzbau an der TU München. (Foto: Martin Polt)

„Holzhäuser helfen uns in der CO2-Frage“

Bauen mit Holz war lange in Vergessenheit geraten, heute liegt es wieder im Trend. Überall auf der Welt planen Architekturbüros derzeit Häuser, auch Hochhäuser, aus Holz. Hermann Kaufmann ist Professor für Entwerfen und...

Mit dem neuen Prüfstand lassen sich verstärkte Brückenbauteile in zwei Richtungen gleichzeitig belasten.

Auf Biegen und Beulen

Der Bau von Stahlbrücken ist teuer. 85 Millionen soll die neue Autobahnbrücke bei Oberthulba zwischen Würzburg und Fulda kosten. Da lohnt es sich Material zu sparen und die Bauteile so filigran wie möglich und so stabil wie...

Prof. Ferdinand Ludwig verbindet die Stämme zweier Bäume miteinander.

Architektur, die atmet

Planen und Bauen mit lebenden Werkstoffen: Prof. Ferdinand Ludwig hat 2007 das Forschungsgebiet Baubotanik begründet. Im Interview erklärt der Architekt und Professor für Landschaftsarchitektur, mit welchen Tricks er...

Das Messteam beim Aufkleben der faseroptischen Messsensoren.

Leben alte Brücken länger als gedacht?

Mehr Verkehr, größere Lasten: Werden die mehr als 50 Jahre alten Brücken in Deutschland nach aktuellen Normen beurteilt, weist ein Großteil von ihnen rechnerisch große Defizite auf. Trotzdem sind bei vielen Brücken...