TUM – Technical University of Munich Menu
Fluorescence- in-situ-hybridization shows mRNA-activity in a tissue sample. Blue: low, red: high activity – Image: S. S. Bajikar / University of Virginia, Charlottesville (USA)
Fluorescence- in-situ-hybridization shows mRNA-activity in a tissue sample. Blue: low, red: high activity – Image: S. S. Bajikar / University of Virginia, Charlottesville (USA)
  • Research news

Statistical methods improve biological single-cell analysis

Tracing unique cells with mathematics

Stem cells can turn into heart cells, skin cells can mutate to cancer cells; even cells of the same tissue type exhibit small heterogeneities. Scientists use single-cell analysis to investigate these heterogeneities. But the method is still laborious and considerable inaccuracies conceal smaller effects. Scientists at the Technische Universität München (TUM), the Helmholtz Zentrum München and the University of Virginia (USA) have now found a way to simplify and improve the analysis by mathematical methods.

Each cell in our body is unique. Even cells of the same tissue type that look identical under the microscope differ slightly from each other. To understand how a heart cell can develop from a stem cell, why one beta-cell produces insulin and the other does not, or why a normal tissue cell suddenly mutates to a cancer cell, scientists have been targeting the activities of ribonucleic acid, RNA.

Proteins are constantly being assembled and disassembled in the cell. RNA molecules read blueprints for proteins from the DNA and initiate their production. In the last few years scientists around the world have developed sequencing methods that are capable of detecting all active RNA molecules within a single cell at a certain time.

At the end of December 2013 the journal Nature Methods declared single-cell sequencing the "Method of the Year." However, analysis of individual cells is extremely complex, and the handling of the cells generates errors and inaccuracies. Smaller differences in gene regulation can be overwhelmed by the statistical "noise."

Easier and more accurate, thanks to statistics

Scientists led by Professor Fabian Theis, Chair of Mathematical modeling of biological systems at the Technische Universität München and director of the Institute of Computational Biology at the Helmholtz Zentrum München, have now found a way to considerably improve single-cell analysis by applying methods of mathematical statistics.

Instead of just one cell, they took 16-80 samples with ten cells each. "A sample of ten cells is much easier to handle," says Professor Theis. "With ten times the amount of cell material, the influences of ambient conditions can be markedly suppressed." However, cells with different properties are then distributed randomly on the samples. Therefore Theis's collaborator Christiane Fuchs developed statistical methods to still identify the single-cell properties in the mixture of signals.

Combining model and experiment

On the basis of known biological data, Theis and Fuchs modeled the distribution for the case of genes that exhibit two well-defined regulatory states. Together with biologists Kevin Janes and Sameer Bajikar at the University of Virginia in Charlottesville (USA), they were able to prove experimentally that with the help of statistical methods samples containing ten cells deliver results of higher accuracy than can be achieved through analysis of the same number of single cell samples.

In many cases, several gene actions are triggered by the same factor. Even in such cases, the statistical method can be applied successfully. Fluorescent markers indicate the gene activities. The result is a mosaic, which again can be checked to spot whether different cells respond differently to the factor.

The method is so sensitive that it even shows one deviation in 40 otherwise identical cells. The fact that this difference actually is an effect and not a random outlier could be proven experimentally.

This work has been funded by the American Cancer Society, the National Institutes of Health, the German Research Foundation (DFG), the German Academic Exchange Service (DAAD), the Pew Scholars Program in the Biomedical Sciences, the David and Lucile Packard Foundation, the National Science Foundation and the European Research Council.


Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles
Sameer S. Bajikar, Christiane Fuchs, Andreas Roller, Fabian J. Theis, and Kevin A. Janes
PNAS, Early Edition, 21 Januar 2014, Doi: 10.1073/pnas.1311647111


Prof. Dr. Fabian J. Theis
Technische Universität München
Mathematical modeling of biological systems
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 18386E-Mail

Helmholtz-Zentrum München
Institute of Computational Biology
Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Tel.: +49 89 3187 2211
E-Mail - Internet

Corporate Communications Center

Technical University of Munich

Article at tum.de

Computer biology can be used to calculate cell changes.

AI predicts treatment success for diseases

The scGen computer model, developed by scientists at the Technical University of Munich (TUM) and Helmholtz Zentrum München, predicts how cells will behave. The software uses artificial intelligence to model the response of...

Das Bild zeigt Prof. Fabian Theis, beim Schreiben von Formeln an eine Tafel.

Germany-wide AI network headquartered in Munich

Informatics, robotics and machine intelligence are central fields of research at the Technical University of Munich (TUM). Now TUM is networking as a part of the new Helmholtz Artificial Intelligence Cooperation Unit...

Durch die Einzelzell-RNA-Sequenzierung lässt sich herausfinden, welche DNA-Abschnitte für die Bildung einer Zelle aktiv werden. (Bild: iStockphoto.com / D-Keine)

AI finds errors in RNA analysis

Why is it that some cells in the human body do not behave as they should and form cancerous tumors, for example? Researchers hope to find answers through what they call single-cell analysis. However, so far this method has...

Munich Center for Machine Learning launched

Machine learning and artificial intelligence are key technologies for the digital economy and society. Leibniz Prize winner Prof. Daniel Cremers from the Technical University of Munich (TUM) is one of the coordinators of a...

Mit der Software BaSiC verbessertes Mosaikbild eines Maushirn-Schnitts. (Bild: Tingying Peng / TUM/HMGU)

Clear view on stem cell development

Today, tracking the development of individual cells and spotting the associated factors under the microscope is nothing unusual. However, impairments like shadows or changes in the background complicate the interpretation...

Nanog-Konzentrationen verfolgt über acht Zellgenerationen einer Zelle (weiß: hoch, schwarz: kein Nanog; x: Zelle tot) ­ Bild: Carsten Marr / TUM/HMGU

Protein of everlasting youth

Scientists at the Helmholtz Zentrum Munich and the Technical University of Munich working in collaboration with colleagues at ETH Zurich have discovered that variations in the NANOG expression of embryonic stem cells are...

Mehr als 40% aller Gene im Experiment korrelierten mit einem kleinen Satz bekannter Zellzyklus-Marker (orange) - Grafik: Florian Büttner

Mathematics improve single-cell analysis

A new computational approach allows to account for confounding factors and hidden biological processes in the analysis of single-cell RNA sequence data. Using this method, individual subpopulations and cell types can be...