NMR/SAXS structural model of the Hsp90-Tau protein complex (light blue:  Hsp90, orange: tau-protein) (image: Tobias Madl / TUM/HMGU)
NMR/SAXS structural model of the Hsp90-Tau protein complex (light blue: Hsp90, orange: tau-protein) (image: Tobias Madl / TUM/HMGU)

Chaperone binds protein responsible for Alzheimer’s diseaseDangerous mistaken identity

Tau proteins, which are responsible for Alzheimer’s disease, bind to the folding protein Hsp90. The molecular recognition mechanisms that play a role here, have been unveiled by an international team of scientists led by the Technische Universität München (TUM) and the Helmholtz Zentrum München. This might open the door for new approaches for the treatment of Alzheimer’s disease, as the scientists report in the trade journal “Cell”.

Proteins like the so-called heat shock protein Hsp90 play an important role in almost all processes within human cells. They help other proteins fold into their three-dimensional structure or return damaged proteins back into their proper shape.

Recently, there has been increasing evidence indicating that the heat shock protein Hsp90 may also be involved in the folding processes of the tau protein. Deposits of tau proteins in brain cells are typical for Alzheimer’s disease and are held responsible for decaying nerve cells.

However, while dissolved tau proteins look more like long, stretched chains, HSP90 binds predominantly proteins that have already been prefolded. This contradiction has now been resolved by an international team headed by Dr. Tobias Madl, leader of the BioSysNet Working Group and TUM Junior Fellow at the Technische Universität München and leader of the Emmy-Noether Group Structural Biology of Signal Transduction at the Institute of Structural Biology at the Helmholz Zentrum München, as well as Prof. Stefan Rüdiger from the Dutch University of Utrecht.

Using a combination of very different technics like magnetic resonance spectroscopy, small-angle X-ray scattering and computer modeling, they successfully determined structure and dynamics of the interactions between the two biomolecules: For Hsp90 the tau protein looks like a prefolded larger protein. Furthermore they were able to deduce how Hsp90 influences the aggregation of tau proteins with one another.

“Deposits of tau proteins can cause Alzheimer’s disease. We have discovered the protein regions in which the proteins interact. This is a novel and important starting point for influencing structural formation and for developing future therapies for Alzheimer’s disease,” says Madl.

In addition to Alzheimer’s disease, further neurodegenerative diseases are caused by protein aggregation. Chaperones also play a role in the development of cancer and cystic fibrosis. These scientific insights thus provide an important basis for better understanding the disease mechanisms.

The research was funded by the European Community, the German Research Foundation (DFG), the Dutch Organization for Scientific Research (NWO), the Austrian Academy of Sciences, the Portugese Fundação para a Ciência e a Tecnologia and the National Institutes of Health (USA), as well as the Bavarian Ministry of Science and Research. The small-angle X-ray scattering (SAXS) experiments were conducted in the outstation of the EMBL at DESY in Hamburg. The computer modeling was done at the Leibniz Supercomputing Center of the Bavarian Academy of Sciences.

Original publication:

Karagoz, G. E. et al. (2014), Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell, 156, (5), 963-974 Doi: 10.1016/j.cell.2014.01.037


Dr. Tobias Madl
BioSysNet & Emmy Noether junior research group leader
Technische Universität München
Department of Chemistry
Lichtenbergstr. 4, 85748 Garching Germany
Tel.: +49 89 289 13018 - E-Mail - Internet

Technical University of Munich

Article at tum.de

Grundsteinlegung für den Forschungsneubau des Bayerischen NMR-Zentrums: PStS Stefan Müller (BMBF), Wissenschaftsminister Dr. Ludwig Spaenle, TUM-Präsident Prof. W.A. Herrmann, Prof. Michael Sattler, Leiter des BNMRZ (vlnr) - Foto: Andreas Heddergott / TUM

World-class nuclear magnetic resonance center

The Technical University of Munich (TUM) secures its leading international position in medical protein research with a new large-scale, cutting-edge facility: Today, at the Garching Campus, Bavarian Minister of Science Dr....

Fasern des Muskelproteins Aktin

TU München establishes center for protein research

Technische Universität München (TUM) is establishing the “TUM Center for Functional Protein Assemblies (CPA)” to concentrate its wide-ranging expertise in protein research. It will conduct cross-departmental research into...

HSP90 schützt p53 bei Gefahr.

A chaperone for the “guardian of the genome”

The protein p53 plays an essential role in the prevention of cancer by initiating the controlled death of a cell with damaged genes which is in danger to transform into a cancerous cell. The heat shock protein Hsp90, in...

Die ungewöhnliche asymmetrische Aktivierung von Hsp90.

Symmetrical protein activated by break in symmetry

Mucoviscidosis, a disease better known as cystic fibrosis, is the most common hereditary metabolic disease in Europe. The defective regulation of the heat shock protein Hsp90 by the partner protein Aha1 is a trigger of the...