Metallic terbium. (Photo: Astrid Eckert / TUM)
Metallic terbium. (Photo: Astrid Eckert / TUM)
  • Research news

New weapon in the fight against cancer:Radionuclide treatment against small tumors and metastases

Medicine could very soon have a new ally in the fight against cancer: Terbium-161. Its most important weapon: Conversion and Auger electrons. Researchers at the Technische Universität München (TUM) have developed a new treatment method based on the Terbium-161 radionuclide which could possibly soon be used to treat smaller tumors and metastases in a more targeted way. The nuclide was produced at the TUM’s research neutron source. Its effectiveness has already been tested on cancer cells in cooperation with the Paul Scherrer Institute (Villingen/Switzerland).

A cancer diagnosis is not necessarily a death sentence. There are now quite a number of possibilities to treat cancer. In addition to radiotherapy and chemotherapy, so-called radionuclide treatment has also become an important component in the fight against the mutated cells. It involves injecting radioactive elements, so-called nuclides, into the patient’s circulatory system. Bonded to special molecules which preferentially attach themselves to cancer cells, the nuclides are pumped through the body by the heart until they finally find their target: a cancer cell. Having arrived there, they attach themselves to its cell walls, decay and thus release radiation into their surroundings. This attacks the cancer cells at close range and ideally destroys them.

Lutetium-177 is a nuclide already used for clinical applications. As it decays, fast electrons, so-called beta particles, are generated. In human tissue they have a range of up to 100 micrometers, five times the diameter of a tumor cell. They can therefore also damage healthy tissue in the vicinity. Dr. Silvia Lehenberger, a radiochemist at the TUM, has now succeeded in producing the Terbium-161 nuclide pure enough and in quantities sufficient for therapeutic applications. The nuclide emits not only the beta particles, but also conversion and Auger electrons, which have a range of only 0.5 to 30 micrometers. Their ranges match the size of tumor cells, making them ideal for the treatment of small tumors and metastases. “Moreover, the nuclide has a higher energy content than comparable particles,” explains Silvia Lehenberger. “This means smaller doses can be administered to the patient, which in turn means a reduction in the radiation exposure.”

Like lutetium or neodymium, which is familiar from high-power magnets, terbium is one of the so-called rare earth metals. The elements of the rare earths are extremely similar in chemical terms. Moreover, the raw material contains impurities which would not be permissible for a clinical application. It was therefore essential to develop suitable separation methods in order to be able to isolate the desired terbium-161 in as pure a state as possible. Coauthor and TUM colleague Christoph Barkhausen played a crucial role in the development of the separation method. The similarity of the rare earth elements also has an advantage, however: The medical application worked out for Lutetium-177 can also be used for Terbium-161.

A cooperation between Silvia Lehenberger and researchers at the Paul Scherrer Institute in Villingen (Switzerland) has already been able to prove the effectiveness of the nuclide on cancer cells in the laboratory. This is only the first step on the road to the final medication, however. It must pass a great many tests before it can be administered to people in hospital.

The researchers produced the Terbium-161 nuclide from Gadolinium-160 by neutron irradiation at the Garching FRM II research neutron source. Terbium-161 is ideal for therapeutic purposes because it has a half-life of only 6.9 days. This has the advantage that, after it has been produced, it can be transported to the clinic where it is to be used without losing much of its activity; it also means that the radiation has already decayed to about one percent of its original value after 50 days.

The work was undertaken as part of a cooperation between Radiochemistry Munich (RCM) at the TUM and the Laboratory for Radiochemistry and Environmental Chemistry and the Center for Radiopharmaceutical Sciences at the Paul Scherrer Institute (Villingen/Switzerland). The Terbium-161 was mainly produced at the neutron source of the Technische Universität München in Garching and additionally at the Institut Laue-Langevin in Grenoble and in the neutron source of the Helmholtz Center Berlin. Lutetium-177 for comparative tests was provided by Isotope Technologies Garching GmbH, which has been providing this nuclide to hospitals for many years for therapeutic purposes.

Original publication:

Silvia Lehenberger, Christoph Barkhausen, Susan Cohrs, Eliane Fischer, Jürgen Grünberg, Alexander Hohn, Ulli Köster, Roger Schibli, Andreas Türler, Konstantin Zhernosekov
The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy
Journal of Nuclear Medicine and Biology, DOI: 10.1016/j.nucmedbio.2011.02.007

Corporate Communications Center

Technical University of Munich

Article at tum.de

Research for the development of a new fuel with low enrichment: Teresa Kiechle and Julian Becker  in the uranium laboratory of the FRM II.

Pioneering work: Prototype of a new fuel

The Technical University of Munich (TUM) and Framatome are working together on the development of a new fuel for the research neutron source Heinz Maier-Leibniz (FRM II). The fuel shall consist of low-enriched, monolithic...

Seinen 60. Geburtstag feiert das Garchinger „Atom-Ei“, der Forschungsreaktor München wurde am 31.10.1957 in Betrieb genommen. (Foto: Bernhard Ludewig / TUM)

The "Atomic Egg" celebrates is 60th birthday

On October 31, 1957, the Munich research reactor FRM went online for the first time. Until 2000, the “Atomic Egg” of the Technical University of Munich (TUM) was a reliable provider of neutrons for basic research and...

Reaktorbecken im FRM II. (Foto: Andreas Heddergott)

TUM research reactor delivers first neutrons

The research neutron source FRM II of the Technische Universität München in Garching today produced its first neutrons. “With this, the most modern neutron source in the world has entered a decisive phase,” exclaims TU...

FRM I (links) und FRM II auf dem Campus Garching - Bild: Andreas Battenberg / TUM

Anniversary of most powerful neutron source worldwide

For exactly ten years the Heinz Maier-Leibnitz research neutron source (FRM II) of the Technische Universität München (TUM) has been providing research, industry and medicine with neutrons. Built to the latest safety...

Physiker Josef Lichtinger begutachtet die

Lithium in the brain

Experiments with neutrons at the Technische Universität München (TUM) show that the antidepressant lithium accumulates more strongly in white matter of the brain than in grey matter. This leads to the conclusion that it...

Gitter aus Spinwirbeln

Magnetic monopoles erase data

A physical particle postulated 80 years ago, could provide a decisive step toward the realization of novel, highly efficient data storage devices. Scientists at the Technische Universität München (TUM), the Technische...

Metallisches Terbium. (Foto: Astrid Eckert / TUM)

Radionuclide treatment against small tumors and metastases

Medicine could very soon have a new ally in the fight against cancer: Terbium-161. Its most important weapon: Conversion and Auger electrons. Researchers at the Technische Universität München (TUM) have developed a new...

Prof. Dr. Pfleiderer bereitet eine Probe in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz vor. (Photo: Wenzel Schuermann / TUM)

Electric current moves magnetic vortices

Faster, smaller and more energy efficient – that is what tomorrow’s computers should look like. This means that data needs to be written and processed faster. Physicists at the Technische Universität München (TUM) and the...

Sebastian Mühlbauer bei der Vorbereitung eines Experiments

Skyrmion Lattice in a chiral Magnet

Physicists from the Technische Universität München (TUM) and the University of Cologne have discovered a new type of magnetic ordering in the metallic compound manganese silicon. A team headed by physicist Sebastian...

3D-Tomografie einer Säugetierlunge. (Bild: Robert Metzke, Burkhard Schillinger, TU München)

New strategies could save thousands of lives

According to current estimates, over 100,000 patients in Europe receive intensive medical care for acute pulmonary failure each year. Where patients require mechanical ventilation over several days, the survival rate falls...