Fungal infestation on a leaf of the model plant thale cress.
Fungal infestation on a leaf of the model plant thale cress. (Photo: Jeffery L. Dangl / UNC)

Pathogens specifically target multi-function proteinsGood networkers make prime targets

Proteins form either small or large networks to perform their functions. How these protein networks are subverted by pathogens, has been investigated on a plant model by a research team. Distinct pathogens like fungi and bacteria were found to use the same tactic, launching targeted attacks on highly networked proteins that have multiple functions. The researchers’ findings are published in the current issue of Cell Host & Microbe. 

Proteins are responsible for practically all vital functions in an organism. For example, they catalyze metabolic reactions, forward signals, transport particular substances and control immune system responses. Researchers established some years ago that proteins do not function independently of each other, but instead form complex networks.

"When you examine the protein networks, you find many similarities with online social networks," says Dr. Pascal Falter-Braun from TUM's Chair of Plant Systems Biology. "Some proteins are good networkers that maintain contact with many other protein molecules, while others are less interactive."

Different pathogens attack the same targets

By studying the plant model Arabidopsis thaliana (thale cress), the researchers found that pathogens specifically targeted the highly networked proteins. "We were surprised that pathogens as biologically dissimilar as bacteria and fungi manipulate the same proteins," Falter-Braun continues. These include proteins which control important processes in the cells, for example the transcription factors which activate genes for the production of new proteins. 

It has been known for some time that these "hubs" are important for the entire network since they coordinate and synchronize distict processes. "The aim of pathogens is to weaken their host as much as possible, so they try to attack and take over the control centers of the cell, in other words the proteins with the most 'friends' in the network," explains Falter-Braun. 

Control centers are largely unchanged

The central role of these proteins is also reflected in the fact that they have barely evolved over time. When organisms evolve, minor mutations can lead to changes in their molecules. If this results in an advantage for the particular organism, it is likely that the new properties will be passed on to its offspring. 

In the case of highly networked proteins, such changes rarely occur, as Falter-Braun explains: "Since these proteins occupy such a central position in the network, it is very difficult for them to change without this having a negative impact on the plant." It appears that the pathogens exploit this evolutionary conservation by targeting proteins that do not change - and therefore cannot elude the intruders.  

Assistance from the network

At the same time, the networks appear to be structured in a way that helps them effectively defend the vulnerable hubs. The proteins that are particularly 'attractive' to the pathogens often have neighbors with mutations that are well tolerated by the network. Further study is required in order to understand how this "neighborhood watch" works and whether the network provides other defense mechanisms.

The fact that different pathogens attack the same proteins in the plant could open the door to cultivating crop plants that are more resistant. Whether the results can be transferred to other organisms - and even to humans - is a question that will require further research. "Since human proteins have undergone the same evolutionary processes, it is perfectly possible that the findings will apply to humans, too," concludes Falter-Braun.

Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life; Ralf Weßling, Petra Epple, Stefan Altmann, Yijian, Li Yang, Stefan R. Henz, Nathan McDonald, Kristin Wiley, Kai Christian Bader, Christine Gläßer, M. Shahid Mukhtar, Sabine Haigis, Lila Ghamsari, Amber E. Stephens, Joseph R. Ecker, Marc Vidal, Jonathan D. G. Jones, Klaus F. X. Mayer, Emiel Ver Loren van Themaat, Detlef Weigel, Paul Schulze-Lefert, Jeffery L. Dangl, Ralph Panstruga, and Pascal Braun; Cell Host & Microbe, DOI: 10.1016/j.chom.2014.08.004

Dr. Pascal Falter-Braun
Technische Universität München
Chair of Plant Systems Biology
Tel: +49 8161 71-5645

Technical University of Munich

Article at

Das Foto zeigt, wie wichtig Brassinosteroide für die Entwicklung von Pflanzen sind: Ein Mangel des Pflanzenhormons (rechts) führt zu Wachstumsstörungen, hier bei Gurkenpflanzen.

How steroid hormones enable plants to grow

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid hormones similar...

Pflanzen wachsen zum Licht – verantwortlich dafür ist das Pflanzenhormon Auxin.

How do plants grow toward the light?

Plants have developed a number of strategies to capture the maximum amount of sunlight through their leaves. As we know from looking at plants on a windowsill, they grow toward the sunlight to be able to generate energy by...

The natural resilience is in the genes

Maize (Zea mays) is among the most important food and fodder crops worldwide. However diseases and pests cause significant damage to harvests. Geneticists at the Center for Food and Life Sciences Weihenstephan (WZW) of the...