A central screen provides driving information. With simple swiping gestures the driver can enter commands on a touch pad (right). – Photo: Florian Lehmann / TUM
A central screen provides driving information. With simple swiping gestures the driver can enter commands on a touch pad (right). – Photo: Florian Lehmann / TUM

Visio.M Automotive Service Bus goes open sourceThe car becomes internet hardware

Up to 80 different systems putter around in many cars. The complexity has come to a limit. Within the “Visio.M” research project, funded by the German Federal Ministry for Education and Research with a total of 7.1 million euro, scientists at the Technische Universität München (TUM) have developed a two-tier IT system that reduces this complexity drastically. Now the researchers put their “Automotive Service Bus” under an open source license.

Cars are starting to resemble computers more and more. However, the information architectures they use build on principles that were developed over the last one hundred years. Increasingly, breakdowns result from the electronics. And in the near future, cars will also communicate via the internet and drive via remote control or even autonomously.

For Visio.M scientists at the TU München have now developed a completely new IT architecture. Akin to smart phones, it is structured in two layers: All driving and safety relevant functions run in one layer, while comfort functions, as well as communications between system, driver and internet are located in the other.

The system is protected from external attacks by running the two subsystems on different platforms. All vital functions are managed by a central electronic control unit (ECU) with a controller area network (CAN) bus. A web-enabled computer is responsible for driver and internet communication. Its basic architecture principle builds on the “Automotive Service Bus” developed by the researchers.

News exchange on the Automotive Service Bus

The Automotive Service Bus functions as a message channel. All components can send and receive messages via this channel. Essential for security is that the components have only read access to vehicle data. Only in clearly defined situations for predefined functions the central ECU grants write access. This allows, for example, the implementation of a remote control for a car as demonstrated at the CeBIT stand (C79 in Hall 12) of the German federal government.

In principle, there are three different kinds of messages: Events provide information like the current speed or position. Commands allow interactions between individual components, like setting a new target temperature for the air conditioning system. Preferences are messages with driver-specific information like music preferences or a home address.

“All components must adhere to the grammar of the Automotive Service Bus, that’s all,” says Michael Schermann, director of the Automotive Service Lab at the Chair for Computer Science in Economics at the TU München. “Just like apps on a smart phone, components can be updated, appended or deleted without having to visit a service station.”

Uniform user interface

A graphical user interface (GUI) facilitates communication with the driver. All essential driving information is displayed on a central dashboard screen. “The display on this screen can be designed as needed,” says Michael Schermann. “In Visio.M we chose a rather classical display design with round instruments.”

A center mounted touchscreen accepts driver input. To minimize distractions while driving, the unit accepts simple swipe gestures. In contrast to smart phones, there are no elements that must be accurately “hit” with the finger.

If components are added or altered, the GUI remains largely unchanged. New or different functions simply become available. On the other hand, users can adapt the GUI to their personal preferences without without any work on individual components.

While cars of the past could hardly be altered over their entire lifespan, the separation of the two layers allows updates and adaptations to be made at any point in time. “The Automotive Service Bus also forms an ideal basis for ‘premium services.’ For example, for a small additional fee personal music collections stored in a cloud can be made available to rental car drivers,” says Michael Schermann. “And if I prefer the navigation program of a specific provider, the system can make this service available – without changes to the vehicle.”

Automotive Service Bus becomes open source

Equipped with this system Visio.M received its official road-use certification in October 2014. Following the end of the Viso.M research project, the developers at the TU München are now making the Automotive Service Bus available under an open source license. “This will provide developers around the world the opportunity to use this platform for their own research,” says Michael Schermann.

The OSGi software platform (Open Service Gateway Initiative) forms the basis of the Automotive Service Bus. It is Java-based and, as such, runs on all standard operating systems like Windows, Linux or Mac OS. The hardware platform is a PandaBoard, a single board computer based on a chipset of the partner company Texas Instruments, running a Linux operating system. An Apple iPad serves as a touch screen. The central control unit is an ECU of the partner company IAV.

Participants in the Visio.M consortium were, in addition to the automotive companies BMW AG (lead manager) and Daimler AG, the Technische Universitaet Muenchen as a scientific partner, and Autoliv BV & Co. KG, the Federal Highway Research Institute (BAST), Continental Automotive GmbH, Finepower GmbH, Hyve AG, IAV GmbH, InnoZ GmbH, Intermap Technologies GmbH, LION Smart GmbH, Amtek Tekfor Holding GmbH, Siemens AG, Texas Instruments Germany GmbH and TÜV SÜD AG as industrial partners. The project was funded under the priority program "Key Technologies for Electric Mobility – STROM" of the Federal Ministry for Education and Research (BMBF) for a term of 2.5 years with a total budget of 10.1 million euros.


Michael Schermann
Technische Universität München
Computer Science in Economics (Prof. Dr. Helmut Krcmar)
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 19507E-MailInternet


Technical University of Munich

Dr. Andreas Battenberg

Article at tum.de

Schon 2013 fuhr der Visio.M ferngesteuert von einer Leitwarte aus. (Foto: Andreas Battenberg / TUM)

Automated electric vehicles

The German Ministry of Education and Research (BMBF) funded project UNICARagil aims to rethink vehicles and their development processes. The goal is a disruptive, modular and agile vehicle architecture and the prototypical...

Entrepreneurship Center auf dem Campus Garching

UnternehmerTUM declared a Digital Hub

UnternehmerTUM, the Center for Innovation and Business Creation at TUM, has been declared Digital Hub Mobility by German Federal Minister for Economic Affairs Sigmar Gabriel. UnternehmerTUM is thus one of the first five...

Körpernahe effiziente Klimatisierung im Vision.M - Bild: Alexander Präbst / TUM

Passenger focused air conditioning

How can a pleasant vehicle climate be achieved efficiently? Researchers at the Technische Universität München (TUM) pursued this question in the context of the research program Visio.M funded by the German Federal Ministry...

Visio.M, das neue Elektroauto der TU München - Bild: Florian Lehmann / TUM

Electromobility, efficient and safe

An attractive electric vehicle at an affordable price that provides safety and comfort combined with a reasonable driving range: that was the goal of the Visio.M project. The participating researchers at the Technische...

Das Leichtbau-Torque Vectoring-Getriebe des Visio.M – Bild: Siemens AG

Perfect torque distribution for safe driving

Large range, agile drive dynamics and excellent safety: These are the goals the Visio.M electro-mobility project strives to achieve. Researchers at the Technische Universität München (TUM) have developed a torque vectoring...

Die stabile Fahrgastzelle des Vision.M aus carbonfaserverstärktem Kunststoff bietet einen sicheren Überlebensraum - Bild: IAV GmbH

Safely on the road in electric cars

Efficient, subcompact vehicles with electric drives provide an excellent opportunity to push forward electromobility. However, traffic experts warn that the current safety standards of the L7E vehicle class ("quad class")...

Visio.M fährt ferngesteuert auf dem Vorplatz der Fakultät für Maschinenwesen. Foto: Andreas Heddergott / TUM

The invisible driver

Fully autonomous cars may still be the stuff of science fiction. Remote driving technology, however, may be much closer than we think. Scientists at the Technische Universität München (TUM) believe that full-size remote...

MUTE dient als Testwagen für das Visio.M-Projekt - Bild: Florian Lehmann / TUM

Electric mass mobility for urban environments

Electric vehicles powered by electricity from renewable energy sources are an attractive option for mobility within the urban area and beyond. However, previous approaches lead to vehicles that either are too heavy and too...