Image representing the slow waves in the brain, which spread out normally during sleep (left). This process is severely disrupted by the β -amyloid plaques (center). The disruption is reversed by administering a benzodiazepine (right). (Picture: Marc Aurel Busche / TUM)
Image representing the slow waves in the brain, which spread out normally during sleep (left). This process is severely disrupted by the β -amyloid plaques (center). The disruption is reversed by administering a benzodiazepine (right). (Picture: Marc Aurel Busche / TUM)

Protein deposits associated with dementia influence brain activity during sleepAlzheimer’s disease: Plaques impair memory formation during sleep

Alzheimer’s patients frequently suffer from sleep disorders, mostly even before they become forgetful. Furthermore, it is known that sleep plays a very important role in memory formation. Researchers from the Technical University of Munich (TUM) have now been able to show for the first time how the pathological changes in the brain act on the information-storing processes during sleep. Using animal models, they were able to decode the exact mechanism and alleviate the impairment with medicinal agents.

The sleep slow waves, also known as slow oscillations, which our brain generates at night, have a particular role in consolidating what we have learned and in shifting memories into long-term storage. These waves are formed via a network of nerve cells in the brain’s cortex, and then spread out into other parts of the brain, such as the hippocampus.

“These waves are a kind of signal through which these areas of the brain send mutual confirmation to say ‘I am ready, the exchange of information can go ahead’. Therefore, there is a high degree of coherence between very distant nerve cell networks during sleep”, explains Dr. Dr. Marc Aurel Busche, scientist at the Department of Psychiatry and Psychotherapy at TUM University Hospital Klinikum rechts der Isar and TUM Institute of Neuroscience. Together with Prof. Dr. Arthur Konnerth from the Institute of Neurosciences, he headed the study which was published in the journal Nature Neuroscience.

Disrupted spread of sleep waves in Alzheimer models

As the researchers discovered, this coherence process is disrupted in Alzheimer’s disease. In their study, they used mouse models with which the defects in the brains of Alzheimer’s patients can be simulated. The animals form the same protein deposits, known as β-amyloid plaques, which are also visible in human patients. The scientists were now able to show that these plaques directlyimpair the slow wave activity. “The slow oscillations do still occur, but they are no longer able to spread properly – as a result, the signal for the information cross-check is absent in the corresponding regions of the brain,” is how Marc Aurel Busche summarizes it.

The scientists also succeeded in decoding this defect at the molecular level: correct spread of the waves requires a precise balance to be maintained between the excitation and inhibition of nerve cells. In the Alzheimer models, this balance was disturbed by the protein deposits, so that inhibition was reduced.

Low doses of sleep-inducing drugs as possible therapy

Busche and his team used this knowledge to treat the defect with medication. One group of sleep-inducing drugs, the benzodiazepines, is known to boost inhibitory influences in the brain. If the scientists gave small amounts of this sleep medication to the mice (approximately one-tenth of the standard dose), the sleep slow waves were able to spread out correctly again. In subsequent behavioral experiments, they were able to demonstrate that learning performance had now improved as well.

For the researchers, of course, these results are just a first step on the way to a suitable treatment of Alzheimer’s disease. “But, these findings are of great interest for two reasons: firstly, mice and humans have the same sleep oscillations in the brain – the results are thus transferrable. Secondly, these waves can be recorded with a standard EEG monitor, so that any impairment may also be diagnosed at an early stage”, concludes the scientist.

Marc Aurel Busche, Maja Kekuš, Helmuth Adelsberger, Takahiro Noda, Hans Förstl, Israel Nelken and Arthur Konnerth, Rescue of long-range circuit dysfunction in Alzheimer’s disease models, Nature Neuroscience, October 12, 2015.
DOI: 10.1038/nn.4137

Dr. Dr. Marc Aurel Busche
Department of Psychiatry and Psychotherapy at TUM University Hospital Klinikum rechts der Isar and TUM Institute of Neuroscience
Tel: +49 (0)89 4140 – 4201

Technical University of Munich

Dr. Vera Siegler

Article at

Arthur Konnerth (left) and Benedikt Zott in front of the experimental setup.

Direct toxic action of beta-amyloid identified

Hyperactive neurons in specific areas of the brain are believed to be an early perturbation in Alzheimer's disease. For the first time, a team from the Technical University of Munich (TUM) was able to explain the reasons...

Patienten mit Restless Legs Syndrom verspüren nachts einen starken Bewegungsdrang und leiden an unangenehmen Empfindungen wie Schmerzen oder Kribbeln in den Beinen. (Bild: burakkarademir / iStock)

Restless legs syndrome: New genetic risk variants found

Restless legs syndrome (RLS) is characterized by restless, painful legs that do not settle down at night. The causes are largely unknown. An international team led by the Technical University of Munich (TUM) and the...

Marc Aurel Busche am Zwei-Photonen-Mikroskop, welches die direkte Beobachtung von Nervenzellen im intakten Gehirn mit hoher räumlicher und zeitlicher Auflösung ermöglicht. (Bild: K. Bauer / TUM)

Dementia: new substance improves brain function

The protein amyloid beta is believed to be the major cause of Alzheimer’s disease. Substances that reduce the production of amyloid beta, such as BACE inhibitors, are therefore promising candidates for new drug treatments....

Zwei-Photonen-Mikroskopie: Aufnahme von Zellen (grün) und Amyloid-β Plaques (blau) im Alzheimer-Gehirn. (Bild: Marc Aurel Busche / TUM)

Possible Reasons Found for Failure of Alzheimer’s Treatment

Agglutinated proteins in the brain, known as amyloid-β plaques, are a key characteristic of Alzheimer’s. One treatment option uses special antibodies to break down these plaques. This approach yielded good results in the...

Räumliche Struktur des alphaB-Crystallins, eine hexamere Untereinheit ist farblich heraus gehoben – Bild: Andi Mainz / TUM

New field of application for versatile helper

In Alzheimer’s disease proteins clump together to long fibrils causing the death of nerve cells. Small heat shock proteins can counteract this effect. Scientists, therefore, hope to deploy them as agents in the treatment of...

Ein Neuron mit Amyloid-Plaques. (Foto: Juan Gärtner/ Fotolia)

Promising results with inhibitors of amyloid formation

When proteins change their structure and clump together, formation of amyloid fibrils and plaques may occur. Such “misfolding” and “protein aggregation” processes damage cells and cause diseases such as Alzheimer's and type...