TUM – Technical University of Munich Menu
Der neue Mini-Teilchenbeschleuniger "Munich Compact Light Source" steht in Garching am Zentralinstitut für Medizintechnik (IMETUM). (Foto: K. Achterhold / TUM)
Der neue Mini-Teilchenbeschleuniger "Munich Compact Light Source" steht in Garching am Zentralinstitut für Medizintechnik (IMETUM). (Foto: K. Achterhold / TUM)
  • Research news

World’s first mini particle accelerator for high-brilliance X-rays at TUM

New state-of-the-art compact X-ray source

For some years now it has been possible to generate high-brilliance X-rays using ring-shaped particle accelerators (synchrotron sources). However, such installations are several hundred meters in diameter and cost billions of euros. The world’s first mini synchrotron was inaugurated today at Technical University of Munich (TUM). It can generate high-brilliance X-rays on a footprint measuring just 5 x 3 meters. The new unit will be used chiefly to research biomedical questions relating to cancer, osteoporosis, pulmonary diseases and arteriosclerosis.

Scientists and physicians are still routinely using X-rays for diagnostic purposes 120 years after their discovery. A major aim has therefore been to improve the quality of X-rays in order to make diagnoses more accurate. For example, soft tissues could thereby be visualized better and even minute tumors detected. For a considerable time, a team at the Technical University of Munich (TUM) headed by Professor Franz Pfeiffer, Chair of Biomedical Physics, has been developing new X-ray techniques.

Starting October 29th, the scientists will now be able to use the world’s first mini synchrotron for high-brilliance X-rays at their institute. The Munich Compact Light Source (MuCLS) is part of the new Center for Advanced Laser Applications (CALA), a joint project between TUM and Ludwig-Maximilians-Universität München (LMU).

New technique: collision between electrons and a laser beam

The California-based company Lyncean Technologies, which developed the mini synchrotron, employed a special technique. Large ring accelerators generate X-rays by deflecting high-energy electrons with magnets. They obtain high energies by means of extreme acceleration, and this requires big ring systems.

The new synchrotron uses a technique where X-rays are generated when laser light collides with high-speed electrons – within a space that’s half as thin as a human hair. The major advantage of this approach is that the electrons can be traveling much more slowly. Consequently, they can be stored in a ring accelerator less than five meters in circumference, whereas synchrotrons need a circumference of nearly one thousand meters.

“We used to have to reserve time slots on the large synchrotrons long in advance if we wanted to run an experiment. Now we can work with a system in our own laboratory - which will speed up our research work considerably,” says Pfeiffer.

More intense, more variable and with better resolution

Apart from being more compact, the new system has other advantages over conventional X-ray tubes. The X-rays it produces are extremely bright and intense. Moreover, the energy of the X-rays can be precisely controlled so that they can be used, for example, for examining different tissue types. They also provide much better spatial resolution, as the source of the beam is less diffuse thanks to the small collision space.

“Brilliant X-rays can distinguish materials better, meaning that we will be able to detect much smaller tumors in tissue in the future. However, our research activities also include measuring bone properties in osteoporosis and determining altered sizes of pulmonary alveoli in diverse lung diseases,” explains Dr. Klaus Achterhold from the MuCLS team.

The scientists will initially use the instrument mainly for preclinical research, i.e. examining tissue samples from patients. They will also combine the new X-ray source with other systems, such as phase contrast. The group headed by Franz Pfeiffer has developed and refined the new X-ray phase-contrast technique.

Contact
Dr. Klaus Achterhold
Technical University of Munich (TUM)
Department of Physics (E17)
Tel.: +49 (0)89 289 – 12559
klaus.achterhold(at)ph.tum.de

Download high resolution pictures


More information

Corporate Communications Center

Technical University of Munich Dr. Vera Siegler
vera.siegler(at)tum.de

Article at tum.de

Links: Micro-CT-Aufnahme einer Mausniere, rechts: Nano-CT-Aufnahme des Gewebes.

Histology in 3D

To date, examining patient tissue samples has meant cutting them into thin slices for histological analysis. This might now be set to change – thanks to a new staining method devised by an interdisciplinary team from the...

Ein Stummelfüßer der Art Euperipatoides rowelli.

Nano-CT device successfully tested

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a...

Leibniz-Preisträger Prof. Franz Pfeiffer und eine Wissenschafterin arbeiten an einem Projekt mit dem Mini-Teilchenbeschleuniger MuCLS.

Munich School of BioEngineering sets European standards

Two years after its founding at the Technical University of Munich (TUM), the Munich School of BioEngineering (MSB) is expanding its scope of action: The upcoming opening of the MSB-associated Central Institute for...

Prof. Franz Pfeiffer und PD Dr. Daniela Münzel am Mini-Synchrotron Munich Compact Light Source.

Miniature particle accelerator saves on contrast agents

The most prevalent method for obtaining images of clogged coronary vessels is coronary angiography. For some patients, however, the contrast agents used in this process can cause health problems. A team at the Technical...

Darstellung der Orientierung der Kollagenfasern innerhalb einer Zahnprobe. Die Einzeldaten wurden mit Röntgenstreuung-CT aufgenommen und daraus eine dreidimensionale Nanostruktur der Probe berechnet. (Bild: Schaff et al. / Nature)

Details from the inner life of a tooth

Both in materials science and in biomedical research it is important to be able to view minute nanostructures, for example in carbon-fiber materials and bones. A team from the Technical University of Munich (TUM), the...

Das weltweit erste Bild einer Fliege, die mit einem lasergestützten Röntgentomographie-Bildverfahren aufgenommen wurde. Zusammengesetzt ist es aus rund 1500 Einzelbildern. Es werden selbst feinste Details dreidimensional dargestellt. In einem konventionellen Röntgenbild würden sie unsichtbar bleiben. (Bild: S. Karsch und F. Pfeiffer / LMU, TUM)

Mini X-ray source with laser light

Researchers of the Max Planck Institute for Quantum Optics, the Technical University of Munich (TUM) and Ludwig-Maximilians-Universität München (LMU) have developed a miniature X-ray source with laser light. They used this...

Die Beschleunigerstruktur der kompakten Synchrotronquelle - Bild: Klaus Achterhold / TUM

Compact synchrotron makes tumors visible

Soft tissue disorders like tumors are very difficult to recognize using normal X-ray machines. There is hardly any distinction between healthy tissue and tumors. Researchers at the Technische Universität München (TUM) have...

Eine Plastikblume diente den Wissenschaftlern als Mikroskopierobjekt. (Bild: I. Zanette/TUM)

New simple setup for X-ray phase contrast

X-ray phase-contrast imaging can provide high-quality images of objects with lower radiation dose. But until now these images have been hard to obtain and required special X-ray sources whose properties are typically only...