Organoids just a quarter of a millimeter across exhibit functions of the human intestine. (Photo: TUM/ Zietek)
Organoids just a quarter of a millimeter across exhibit functions of the human intestine. (Photo: TUM/ Zietek)
  • Research news

Organoid exhibits essential functions of a real intestineMini-intestine grown in a test tube

The ability to grow three-dimensional precursors of an organ from stem cells in a Petri dish has brought about a revolution in the field of biomedicine. But exactly what can be researched on such an organoid in vitro? A team from the Technical University of Munich (TUM) has now shown for the first time how artificially grown mini-intestines can be used in nutritional and diabetic research.

Research efforts on the intestine have increased in recent years. Owing to its enormous surface area – comparable to that of a one-bedroom apartment – and the huge number of neurons it contains – comparable to that in the brain – the intestine is sometimes referred to as the abdominal brain. In addition to absorbing nutrients from the foods we eat, it influences our immune status and metabolism. With the help of sensors, specialized cells in the intestinal wall determine which hormones, if any, should be released into the bloodstream. Overall, it acts as a highly sophisticated control center.

How an organoid grows from cells

Among their many functions, intestinal hormones, known as incretins, control blood glucose levels, appetite and fat metabolism. Diabetics and obese individuals have already been successfully treated with drugs based on the mechanisms of action of these hormones. However, still too little is known about the precise mechanism behind incretin release.

Applying a new method that is used mainly in stem-cell research and regenerative medicine, researchers from the Technical University of Munich have now devised a robust intestinal model for molecular research into incretin release in a test tube (in vitro). To do so, they first isolate small pieces of intestine containing stem cells – in this case from mice. In the next step, a nutrient solution in a test tube stimulates the stem cells to develop into an organ-like structure. In just a few days, a spherical organoid forms that measures just a quarter of a millimeter across and is suitable for use in research.

Mini-intestine functions like normal intestinal tissue

“The special thing about our scientific work on the intestinal organoid is that we can observe its inner workings,” explains Dr. Tamara Zietek of the Department of Nutrition Physiology. “The mini-intestines exhibit all the essential functions of a real intestine,” the TUM scientist adds.

The intestinal organoid can:

  • actively absorb nutrients and drugs
  • release hormones after activation by nutrients
  • transmit signals within the intestinal cells to control these processes.

“Until now, it was not possible to investigate these processes in a single model, because conventional models are unsuitable for all these measurements,” says Zietek, the corresponding author of the article that appeared in Scientific Reports of the Nature Publishing Group. In addition, once mini-intestines have been grown, researchers can work with them for months, because they can be replicated in the laboratory. “This drastically reduces the number of experimental animals needed,” says the scientist.

Interdisciplinary collaboration Zietek developed the method in collaboration with Dr. Eva Rath of the Department of Nutrition and Immunology. Working on an interdisciplinary basis, the two scientists have combined organoid cultivation with molecular nutritional research. They are now demonstrating that the mini-intestine is an ideal model for investigating hormone release and transport mechanisms in the digestive tract. “This is a huge advance for gastroenterological basic research as well as biomedical sciences and pharmacology,” Zietek believes. The next step will be to work with mini-intestines grown from human intestinal biopsy material. “We’re already in contact with a hospital that can provide the required research material.”In view of the growing number of diabetics and obese individuals, this method can help nutritional researchers develop new forms of treatment.  

Publication:

Tamara Zietek, Eva Rath, Dirk Haller und Hannelore Daniel: Intestinal organoids for assessing nutrient transport, sensing and incretin secretion, Nature Scientific Reports 19.11.2015.
DOI: 10.1038/srep16831

Contact:
Dr. Tamara Zietek
Technical University of Munich
Department of Nutrition and Immunology
Phone: +49 (0)8161/71 3553
Mail: zietek(at)tum.de

Corporate Communications Center

Technical University of Munich

Article at tum.de

microscopy of intestinal cells

An alternative to animal experiments

Researchers of the Technical University of Munich (TUM) have cultured so-called intestinal organoids from human intestinal tissue, which is a common byproduct when performing bowel surgery. These small “miniature...

Der Dickdarm – hier dunkel hervorgehoben – ist ein wichtiger Teil des Verdauungstrakts: Ist seine Nervenversorgung gestört, verursacht das beispielsweise chronische Verstopfung, das Reizdarm-Syndrom und entzündliche Darmerkrankungen. (Bild: Pixabay / Elionas2)

$7.5 million NIH grant for exploration of the colon

Professor Michael Schemann from the Department of Human Biology at the Technical University of Munich (TUM) is part of a consortium that intends to investigate the role of nerves in normal and diseased colon functions over...

Die Behandlung einer Lebererkrankung im Endstadium ist die Lebertransplantation. Doch die Anzahl gespendeter Lebern ist begrenzt. Ein Hauptziel der regenerativen Medizin ist es deshalb, menschliche Gewebe herzustellen, die funktionierende dreidimensionale Leberdivertikel herausbilden. (Foto: Fotolia/Yodiyim)

Bioengineered livers mimic natural development

How do cells work together and use their genome to develop into human liver tissue? An international research team from the Max Planck Institute, headed by Prof. Barbara Treutlein from the Technical University of Munich...

Ein Ganglion im menschlichen Darm, in dem Nervenaktivität über ein bildgebendes Verfahren nach Gabe des Anti-HuD-Serums registriert wurde. Die Nervenaktivität ist rot: Zu sehen sind aktive Nervenzellen. Die schwarzen Pfeile markieren einige der aktivierten Nervenzellen. Das Inlet (rote Kurve) zeigt die Antwort einer Nervenzelle nach Gabe des Serums (schwarzer Balken unter der Kurve). Der Anti-HuD-Antikörper löst eine Aktionspotentialentladung (Kurvenausschläge nach oben) aus. (Abb.: Schemann, Michel/ TUM)

Antibodies as ‘messengers’ in the nervous system

Antibodies are able to activate human nerve cells within milliseconds and hence modify their function — that is the surprising conclusion of a study carried out at Human Biology at the Technical University of Munich (TUM)....

In normal besiedelten Mäusen sind die Darm-Mikrobiota am Cholesterinmetabolismus beteiligt und unterstützen damit die effiziente Verwertung der tierischen Fette. (Foto: Fotolia/ norman blue)

Cholesterol an Important Piece of the Puzzle for Fat-Burning

Gut bacteria play a little-understood role in the body’s energy balance, which is influenced by diet. However, the crucial nutritional components are unknown. A team at the Technical University of Munich (TUM) was able to...

HSP60 in Mitochondrien kontrolliert die Stammzellproliferation im Darmepithel. HSP60-negative Krypten im Darm zeichnen sich durch den Verlust von braungefärbten Stammzellen aus, während HSP60-positive Darmareale eine verstärkte Stammzellproliferation zeigen. (Foto: Team Haller/ TUM)

Mitochondria control stem cell fate

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new...

Im Sequenz Read Archive, das ist eine öffentliche bioinformatische Datenbank fürs Archivieren von Sequenzen, sind inzwischen über 100.000 Sequenzen als Datensätze zusammen gekommen, die in ihrer Gesamtheit bisher nicht auswertbar sind. (Foto: Fotolia/ Dreaming Andy)

Big data processing enables worldwide bacterial analysis

Sequencing data from biological samples such as the skin, intestinal tissues, or soil and water are usually archived in public databases. This allows researchers from all over the globe to access them. However, this has led...

Dagmar Krüger vom Lehrstuhl für Humanbiologie der TUM hat über einen Zeitraum von acht Jahren mehr als 2200 Proben von rund 450 Patienten mit Darmerkrankungen untersucht. (Foto: TUM/ A. Eckert)

The gut: performing into old age

A breakthrough in basic research and the first comprehensive study on the secretory activity of the human intestine: over a period of eight years, Dr. Dagmar Krüger of the Department of Human Biology at TU Munich has...

Ein Darm eines Patienten von innen, der an Morbus Crohn erkrankt ist. (Foto: Fotolia/ Juan Gärtner)

Fragile bacterial community in the gut

Iron deficiency is often an issue in patients with inflammatory bowel diseases. An international and interdisciplinary research group under the aegis of the ZIEL Institute for Food & Health (ZIEL) at the TU Munich has now...

Die Bilder zeigen Paneth-Zellen im Dünndarm, die bei der Immunabwehr eine wichtige Rolle spielen. Bei Mäusen mit Morbus-Crohn-ähnlicher Entzündung produzieren die Paneth-Zellen weniger Lysozym - eine Substanz, die wichtig für die Mikroben-Abwehr ist. Links: gesunde Zellen mit hoher Lysozym-Produktion (helles grün), rechts geschädigte Paneth-Zellen mit geringer Lysozym-Produktion.

Novel mechanism for Crohn’s disease uncovered

Crohn’s disease is one of a family of chronic inflammatory bowel diseases (IBD). While it has already been proven to have genetic causes, scientists have now shown that the presence of certain intestinal bacteria also plays...