TUM – Technical University of Munich Menu
Pictured are thermograms of 40 day-old Arabidopis plants showing different growth and leaf temperatures indicated by false colors. Plants that combine low water consumption are indicated by green and yellow colors. (Photo: Z. Yang und E. Grill/ TUM)
Pictured are thermograms of 40 day-old Arabidopis plants showing different growth and leaf temperatures indicated by false colors. Plants that combine low water consumption are indicated by green and yellow colors. (Photo: Z. Yang und E. Grill/ TUM)
  • Research news

How plants use water more efficiently

Research shows how to get more crop per drop

Boosting food production with limited water availability is of great importance to humanity. However, our current water usage is already unsustainable today. The fact that plant leaves lose a great deal of water through photosynthesis is the greatest limiting factor for larger harvests worldwide. Scientists at the Technical University of Munich (TUM) have developed an approach to solving the problem: they have been able to get plants to use water more efficiently without restricting their growth. This is thanks to a plant-inherent water-conservation strategy that enables plants to absorb carbon dioxide while minimizing water loss.

Plants activate this water-conserving mode when water is scarce. TUM scientists have been able to identify the activating signal and permanently switch on this water-saving mode. This is a possible solution to resolving the issue that about 70 percent of the water consumed worldwide is utilized by the agricultural sector.

Unsustainable water extraction, primarily by the agricultural sector, is lowering the continent's groundwater table. Every year, about 50 net cubic miles of water – that is approximately three times the annual water volume cascading at the Niagara Falls – is moved from land to sea, thus contributing to a rise in sea level of about 30 percent. According to the Global Agriculture Report, demand for water is three times higher today than it was 50 years ago. Future prospects: by the year 2050, demand for water in agriculture is expected to increase by another fifth.

About 80 percent of the water released into the atmosphere by land masses does not evaporate right away but travels through plant roots and sustains leaf transpiration. This makes the search for crop plants with improved water utilization a central issue for curbing the high water usage in agriculture and ensuring food security for the future.

How plants regulate gas exchange

Plants control the exchange of carbon dioxide (CO2) and water vapor through pores, referred to as stomata, located on their leaves. Closing the stomata reduces water loss but also impedes CO2 absorption. Depending on temperature and humidity, the absorption of CO2 molecules costs plants about 500 to 1,000 molecules of water. When water is scarce, however, plants are capable of reducing internal CO2 concentrations, thus making CO2 absorption more effective.

“Plants have the ability to cut water loss during CO2 absorption in half,” says Erwin Grill, Professor of Botany at TUM – “but they will only switch to this water-saving mode when water is in short supply”. With arable crops, plants with a perpetually activated water-saving strategy would preserve the moisture in the ground to use it for growth and survival at a later point in times of drought.

Plant hormone activates water-saving mode

As the team of TUM scientists has discovered, a plant hormone called abscisic acid is responsible for switching the water-saving mode on. This plant hormone is produced in greater quantities in times of water shortage. In the model plant Arabidopsis, also known as mouse-ear cress, there are 14 receptors responsible for perceiving this plant-specific hormone signal.

The Munich researchers were able to demonstrate that increased production of some of these receptors will cause plants to switch to the water-saving mode even when water is not in short supply. The catch is that only three of the receptors did not negatively influence plant growth. Up to 40 percent of the water required previously could be saved without affecting the plant's performance.

Initial experiments show water-saving effects under simulated field conditions

“The next step is to see if these water-saving effects can also be observed under field conditions,” says Hans Schnyder, Professor of Grassland Studies at TUM and co-author of the study. Initial simulation experiments conducted in phytochambers of the Helmholtz Zentrum München, German Research Center for Environmental Health, support this assumption.

“It remains to be seen if crop plants such as wheat, corn, and rice can produce more biomass with the same amount of water using this mechanism,” says Professor Grill. “We are optimistic. Since the mechanisms involved are present in all plants, it should be possible to transfer these results from the model plant Arabidopsis to crop plants. This would be an important step towards ensuring future food security.” 

Publication:

Zhenyu Yang, Jinghui Liu, Stefanie V. Tischer, Alexander Christmann, Wilhelm Windisch, Hans Schnyder, and Erwin Grill: Leveraging abscisic acid receptors for efficient water use in Arabidopsis, PNAS 2016.
DOI: 10.1073/pnas.1601954113

Contact:

Prof. Dr. Erwin Grill
Technical University of Munich
Chair of Botany
Emil-Ramann-Str. 4
D-85354 Freising
Tel.: +49.8161.71.5433
erwin.grill(at)mytum.de

Corporate Communications Center

Technical University of Munich

Article at tum.de

Mischwälder mildern den Klimawandel, weil sie länger und besser Kohlendioxid speichern. (Foto: iStock/DaLiu)

Mixed forests: ecologically and economically superior

Mixed forests are more productive than monocultures. This is true on all five continents, and particularly in regions with high precipitation. These findings from an international overview study, in which the Technical...

Ein Standort war die Lehrer-Wirth-Strasse in München, wo an Robinien Messgeräte unterhalb des Blattwerkes angebracht wurden. (Bild: F. Rahman/ TUM)

Trees with grassy areas soften summer heat

Trees cool their environment  and "heat islands" like Munich benefit from it. However, the degree of cooling depends greatly on the tree species and the local conditions. In a recent study, scientists at the Technical...

Bei der Kaskadennutzung wird das Holz mit einer Quote von 46 Prozent deutlich effizienter verwendet als bei der einfachen Nutzung. (Foto: R. Rosin / TUM)

Cascade utilisation is also positive for wood

Another ten years — that is approximately how long sustainable forestry will be able to satisfy the continuously growing demand for wood. In Germany and Europe, new concepts are therefore being discussed for more...

Für die Studie sind Proben von Baumkernen aus Metropolen wie hier in Südafrikas Hauptstadt Kapstadt genommen und analysiert worden. (Foto: TUM)

Urban trees are growing faster worldwide

Trees in metropolitan areas have been growing faster than trees in rural areas worldwide since the 1960s. This has been confirmed for the first time by a study on the impact of the urban heat island effect on tree growth...

Die Wissenschaftler befragten Reisbauern, weil Reis eines der wichtigsten Grundnahrungsmittel weltweit ist. (Foto: Fotolia/ ivychuang1101)

Eco-label in exchange for less chemicals on rice fields

Money isn't always everything: Taiwanese rice farmers are willing to produce in a more environmentally friendly fashion if this would earn them an eco-label for their products. For such a label, they are even prepared to...

Roggen ist eine Vertreterin der Triticeae, einer Gruppe von Süßgräsern, die neben Roggen auch die verwandten Getreidearten Brotweizen und Gerste umfasst. (Foto: E. Bauer/ TUM)

Draft sequence of the rye genome

A team of German plant researchers from the Technical University of Munich (TUM) and from the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben (IPK) reports on a whole-genome draft sequence of rye....

Solarbetriebene Messanlage auf dem Grünstreifen am Bordeaux Platz in München. (Foto: M. Rahman/ TUM)

Trees Transpire for a Cool City

Small-leaved limes do not transpire to the same extent in all environments as a study by Mohammad Rahman from the Technical University of Munich (TUM) concludes. During the summer heat, transpiration – the loss of water...

Der Humus unter dem Wald spielt eine ausschlaggebende Rolle für die Fruchtbarkeit, den Wasserhaushalt und die Nährstoffversorgung von Böden. (Foto: Fotolia/outdoorpixel)

Significant humus loss in forests of the Bavarian Alps

Alpine forests will be at great risk should weather phenomena such as droughts and torrential rain become more frequent. As a study by the Technical University of Munich (TUM) shows, the mountain forests of the Bavarian...

Die Forscher haben den Mechanismus gefunden, der bei der schottischen Ackerschmalwand eine um zwei Wochen frühere Blüte auslöst als bei ihren Verwandten in wärmeren Regionen. (Foto: U. Lutz/ TUM)

Plant flowering time now predictable

Plants adapt their flowering time to the temperature in their surroundings. But what exactly triggers their flowering at the molecular level? Can this factor switch flowering on or off and thus respond to changes in the...

Immer häufiger liegen die Temperaturen über dem Optimum fürs Pflanzenwachstum – wie diesen Sommer, was die Humusbildung und Bodenqualität verschlechtert. (Bild: Fotolia)

Humus depletion induced by climate change?

The yields of many important crops in Europe have been stagnating since the 1990s. As a result, the input of organic matter into the soil – the crucial source for humus formation – is decreasing. Scientists from the...

Wuchsdefekte der Modellpflanze Ackerschmalwand (Arabidopsis thaliana), die durch fehlende Steroidhormonwirkung ausgelöst werden (linke Seite), konnten durch Wiederherstellen der Gibberellinproduktion behoben werden (rechte Seite). (Foto: Brigitte Poppenberger / TUM)

Plant growth requires teamwork between two hormones

Two growth-promoting groups of substances, or phytohormones, the gibberellins and the brassinosteroids, are used independently of each other for the breeding and production of crop plants. A team of scientists at Technical...