TUM – Technical University of Munich Menu
  • Research news

New non-invasive imaging method for showing oxygen in tissue

A look beneath the skin

Learning how to look inside a body without having to cut it open is still an important part of medical research. One of the great challenges in imaging remains the visualization of oxygen in tissue. A team led by Prof. Vasilis Ntziachristos, Chair for Biological Imaging at the Technical University of Munich (TUM) and Director of the Institute for Biological and Medical Imaging at the Helmholtz Centre in Munich , has developed a new approach to this task.

Imaging of tissue oxygenation is not straightforward;  different techniques have been considered but each of them has their shortcomings. In recent years, research in this field has focused on optoacoustic methods. These, especially Multispectral optoacoustic tomography (MSOT), form one of the key areas of Vasilis Ntziachristos' research.

Put in simple terms, MSOT turns light into sound and then into visual information: First, a weak pulsed laser beam is directed at tissue. Absorbing molecules and cells respond with a minuscule vibration, which, in turn, creates sound signals. The sound signals are then picked up by sound sensors and translated into images. The way molecules and cells react to the laser beam offers insight into their optical and thus into their biochemical properties.

complex Tissue is an obstacle

While MSOT can, in theory, be used to tell how much oxygen can be found in blood, there is one major obstacle: The intensity of light changes with depth, not only because light has been filtered through all the tissue layers that it passed through, but also because different tissue structures may have different properties that affect how light is scattered and absorbed. In the past, there have been several attempts to solve this problem by calculating how the tissue will affect the propagation of light. “However, due to the high optical complexity of tissues, this approach so far could not be flexibly applied in optoacoustic images of tissues of living subjects,” says Stratis Tzoumas, first author of a  study published in „Nature Communications“, in which the scientists describe their new method.

A new description of light distribution in tissue

Ntziachristos, Tzoumas, and their colleagues came up with a completely different approach. Instead of describing the spatial distribution of light, their imaging method eMSOT - the e stands for "eigenspectra" - avoids simulating the path of light through complex tissue altogether. Instead the new method is based on the discovery that the spectrum of light propagating in tissue can be described by using a small number of basic spectra.  eMSOT uses data from a conventional MSOT-device combined with a new algorithm that is based on this novel way of describing the light spectrum to correct for the effects of light propagation in tissue and obtain accurate images of blood oxygenation in tissue.

With eMSOT, the scientists were able to visualize the blood oxygenation level of living tissue up to one centimeter below the skin surface. "Theoretically, the imaging depth can be extended to more than that," says Stratis Tzoumas. "There is, however, a limit at about three because at some point, light cannot penetrate the tissue any further." The scientists observed a vastly improved accuracy in eMSOT over previous optical and optoacoustic approaches. Apart from being non-invasive and radiation-free, eMSOT also delivers comparable or higher resolution both spatially and temporally, than other optical imaging methods. "Information about the amount of oxygen in tissue is important when it comes to various fields in research and treatment - for example tumor growth or in measurements of metabolism" says Vasilis Ntziachristos. "It may be that eMSOT becomes the gold standard method, once it is ready for clinical use.”

Interview

In our interview, Vasilis Ntziachristos talks about how to adapt new optoacoustic technologies for everyday use. (read the interview)

ContaCt

Dr. Barbara Schröder

Chair of Biological Imaging (CBI)
Technical University of Munich
barabara.schroeder(at)tum.de

Original publiCation

S. Tzoumas S, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, V. Ntziachristos. "Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues." Nature Communications (2016). DOI:10.1038/ncomms12121

 

Corporate Communications Center

Technical University of Munich

Article at tum.de

Infrared thermal images show elevated tumor (yellow) temperature in mice after laser irradiation in with OMV-melanin treated mice (right image). The image on the left shows a mouse treated with OMVs without melanin.

Black nanoparticles slow the growth of tumors

The dark skin pigment melanin protects us from the sun’s damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a...

Veränderung des optoakustischen Signals von phototrophen Bakterien durch die Aufnahme von Makrophagen (außerhalb von Makrophagen: blau; innerhalb von Makrophagen: rot). Die in der oberen Reihe schematisch dargestellte Situation kann sowohl im Mikroskop (2. Reihe) als auch mittels MSOT (unten) nachverfolgt werden. Dabei gibt die Veränderung des MSOT-Signals (3. Reihe) Auskunft über die Verteilung von Rhodobacter-Zellen, die sich innerhalb und außerhalb von Makrophagen befinden und damit über ihre Lokalisation und Aktivität. (Bild: Helmholtz Zentrum München)

Purple bacteria visualize ‘big eaters’

Tumors are very different at cellular and molecular level making them difficult to diagnose and treat. A team from Technical University of Munich (TUM) and the Helmholtz Zentrum München has now shown that harmless purple...

Mit dem neuen "Open-Source"-Mikroskop NeuBtracker lassen sich Nervenaktivitäten während des natürlichen Bewegungsverhaltens von Zebrafischen beobachten. (Bild: A. Lauri / TUM)

Zebrafish live and in colour

A team of scientists from the Helmholtz Zentrum München and the Technical University of Munich (TUM) has successfully developed a new type of microscope. The so-called NeuBtracker is an open source microscope that allows to...

Ein Gefäß mit Zymonsäure. Dahinter sind unscharf die Autoren der Studie zu erkennen.

New insights into the tumor metabolism

Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance. These changes in pH value could be used for example to verify the success of cancer treatments. Up to now, however, there has been...

Gegenüberstellung eines Fluoreszenzbildes eines Zebrafischgehirns und einer  optoakkustisch erzeugten Aufnahme des Organs. (Bild: Razansky / TUM)

Watching the brain in action

Watching millions of neurons in the brain interact with each another is the ultimate dream of neuroscientists. A new imaging method now makes it possible to observe the activation of large neural circuits, currently up to...

Prof. Vasilis Ntziachristos. (Foto: Ntziachristos / TUM)

“An image is worth a thousand words”

Modern imaging methods greatly exceed the possibilities of X-rays. Vasilis Ntziachristos holds the Chair of Biological Imaging at the Technical University of Munich (TUM) and is Director of the Institute for Biological and...

Mini-Teilchenbeschleuniger "Munich Compact Light Source"

TUM successful in European Competition

Nine scientists from the Technical University of Munich (TUM) won out in the latest round of ERC grants. The projects receiving funding are in the disciplines Medicine, Physics and Informatics and deal with a highly varied...

Eine Plastikblume diente den Wissenschaftlern als Mikroskopierobjekt. (Bild: I. Zanette/TUM)

New simple setup for X-ray phase contrast

X-ray phase-contrast imaging can provide high-quality images of objects with lower radiation dose. But until now these images have been hard to obtain and required special X-ray sources whose properties are typically only...