TUM – Technical University of Munich Menu
Prof. Jürgen Ruland (rechts) und Dr. Tim Wartewig haben mit ihrer neuen Studie einen neuen Ansatzpunkt für Therapien gegen Lymphdrüsenkrebs gefunden. (Bild: A. Heddergott / TUM)
Prof. Jürgen Ruland (rechts) und Dr. Tim Wartewig haben mit ihrer neuen Studie einen neuen Ansatzpunkt für Therapien gegen Lymphdrüsenkrebs gefunden. (Bild: A. Heddergott / TUM)
  • Research news

Lymphoma: Important tumor suppressor discovered in immune cells

Shut-off switch for lymphoma

A safety switch that automatically stops the device for example before it overheats are built into many electrical appliances. The body's cells are also equipped with this kind of "emergency stop" functions. They make sure that a defective cell doesn't grow uncontrollably, becoming a tumor cell. A team from the Technical University of Munich (TUM) has now discovered such a switch in immune cells, the T cells. In the future it will be possible to use these results in new therapies for the treatment of T cell Non-Hodgkin's lymphoma triggered by defective immune cells.

In the body T cells are usually responsible for immediately detecting and killing cancer cells. However, problems can arise when a T cell itself develops a defect in its genome, the DNA. If the defect affects areas of the genome which are responsible for cell growth, referred to as oncogenes, the T cell itself can become an uncontrollably growing tumor cell. In addition, the T cell, an important part of the body's immune system against cancer, fails.

This is exactly what occurs in T cell Non-Hodgkin's lymphoma. This aggressive form of lymphoma has a very low rate of successful treatment and afflicts approximately one out of every 100,000 persons in Germany. Prof. Jürgen Ruland, Director of the TUM Institute for Clinical Chemistry and Pathobiochemistry and Principal Investigator at the TUM Central Institute for Translational Cancer Research (TranslaTUM) and at the German Cancer Consortium (DKTK), is working together with his team to precisely understand the molecular mechanisms of these cancers in order to be able to treat them more effectively.

PD-1 as the shut-off switch in tumor formation

In their new study, currently published in the journal "Nature", the scientists succeeded in a very important step: They were able to show that the defective T cells also have an emergency shut-off switch, referred to as a tumor suppressor. They ascertained that the protein PD-1 can turn off defective T cells at an early stage and thus prevent them from becoming tumor cells. The researchers first discovered this function of PD-1 in a mouse model for T cell Non-Hodgkin's lymphoma and were also able to explain the mechanism: PD-1 is activated by defects in genes for cell growth, known as oncogenes, and then suppresses the effect of these genes using additional proteins. Thus it functions as a shut-off switch to prevent the uncontrolled growth of defective T cells.

Tumor analysis helps in deciding on therapies

Then the scientists also successfully resolved the question of why many T cell Non-Hodgkin's lymphomas are so aggressive, in spite of this protective function. They investigated genetic data sets from 150 patients: "Based on our previous results, we intentionally focused closely on PD-1. In individual groups more than 30 % of the patients exhibited changes in the regions of the genome which interfered with the production of PD-1. This has disastrous consequences in the tumor – PD-1 no longer functions as an 'emergency shut-off' for them. The diseased T cells can reproduce uncontrollably," explains Tim Wartewig, lead author of the study.

"These patients could be helped by medications that reverse the loss of PD-1 signaling and thereby destroy the tumor cells. This type of medication already exists for other forms of cancer – In our opinion, use with T cell Non-Hodgkin's lymphoma should also be considered," says Jürgen Ruland. The scientists therefore recommend investigating individual differences in tumors before making decisions about which medication is to be administered.

Original publication

T. Wartewig, Z. Kurgyis, S. Keppler, K. Pechloff, E. Hameister, R. Öllinger, R. Maresch, T. Buch, K. Steiger, C. Winter, R. Rad and J. Ruland, PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis, Nature, November 2017, DOI: 10.1038/nature24649

Contact

Prof. Dr. Jürgen Ruland
Institute for Clinical Chemistry and Pathbiochemistry
University Hospital TUM Klinikum rechts der Isar
Tel.: +49 89 4140-4751
jruland(at)lrz.tum.de

Download high resolution pictures

https://mediatum.ub.tum.de/1416508

Further information

Corporate Communications Center

Technical University of Munich Dr. Vera Siegler
vera.siegler(at)tum.de

Article at tum.de

The study team of the Institute for Medical Microbiology, Immunology and Hygiene (from left to right): Prof. Dirk Busch, Thomas Müller and Kilian Schober

Successful T cell engineering with gene scissors

The idea of genetically modifying a patient’s own immune cells and deploying them against infections and tumors has been around since the 1980s. But to this day modified T cells are still not as effective as natural T cells...

Prof. Dietmar Zehn (right) with the first author of the new study about chronicle immune responses, Francesca Alfei, and his staff member Markus Flosbach.

Tox "exhausts" immune cells

Tumors and certain viral infections pose a challenge to the human body which the immune system typically fails to hand. In these diseases it switches to hypofunctional state that prevent adequate protection. A research team...

Dr. Maximilian Reichert forscht am TUM Universitätsklinikum rechts der Isar an der Metastasenbildung bei Pankreaskrebs. (Bild: S. Willax)

Mutable cancer cells are more dangerous

Pancreatic cancer often spreads, forming metastases in the liver or lungs. The prognosis is better for patients with metastases in the lungs. However, the organ that is more likely to be affected depends on the cancer...

Kathrin Ciecielski and Prof. Hana Algül (rechts) diskutieren die Ergebnisse der Studie. (Bild: A. Heddergott / TUM)

Unexpected efficacy against aggressive cancers

A new anti-cancer drug may be effective against a wider range of cancers than previously thought. Using a mouse model and samples taken from cancer patients, a team from the Technical University of Munich (TUM) has shown...

Arbeiten mit Zellkulturen sind in der onkologischen Grundlagenforschung ein wichtiges Werkzeug. (Bild: A. Heddergott / TUM)

TUM coordinates two new Collaborative Research Centers

The Technical University of Munich (TUM) has taken on the role of coordinator in two new German Research Foundation Collaborative Research Centers (short SFB for german ‘Sonderforschungsbereich’), both of which are...

Roland Rad und sein Team beschäftigen sich mit der Untersuchung molekularer und translationaler Aspekte der Krebsentstehung. (Bild: A. Heddergott / TUM)

Insights into cancer evolution

Pancreatic cancer is a form of cancer associated with the highest mortality rates in the world. However, until now genetic changes that could explain the aggressiveness and early metastasis of this form of cancer had not...

Professor Jürgen Ruland und eine Mitarbeiterin betrachten die Ergebnisse einer Untersuchung.

New key players found in fighting fungi

Fungal infections are a serious health risk. They can be harmful especially to patients whose immune system is compromised through illness or chemotherapy. A team working at the Technical University of Munich (TUM) has...

Prof. Jürgen Ruland (rechts) erforscht mit seiner Arbeitsgruppe unter anderem die Entstehung und Bekämpfung von Lymphomen. (Bild: A. Heddergott / TUM)

Side effects of possible anti-cancer strategy discovered

The Malt1 protein is one of the most important control centers in human immune cells and a real all-rounder. Genetic defects in it can lead to the development of lymphatic cancer (lymphoma). A possible therapeutic approach...

Die Abbildung zeigt eine Fluoreszenzaufnahme von Virus-DNA-Rad50-Card9-Komplexen (gelb) im Zytoplasma (Transmissionsbild) einer Zelle. Nach Infektion der Zelle mit einem DNA-Virus markieren die Wissenschaftler die einzelnen Moleküle, die sie in der Zelle beobachten möchten, mit unterschiedlichen fluoreszierenden Farbstoffen. In blau/magenta leuchtet die DNA, in grün Rad50 und in rot Card9.  (Bild: A. Rottach / LMU)

Starting signal for antiviral defense

Cells have to protect themselves: against damage in their genetic material for one thing, but also against attack from the outside, by viruses for example. They do this by using different mechanisms: special proteins search...