Prof. Peter Rutschmann, project manager of "FIThydro". (Image: Kurt Bauer / TUM)
Prof. Peter Rutschmann, project manager of "FIThydro". (Image: Kurt Bauer / TUM)

Matching power plants to ecosystems – an interview with “FIThydro” project manager Peter RutschmannLarge-scale initiative for ecologically compatible hydropower

For a while, it seemed like we knew everything there was to know about hydroelectric power. Now, however, researchers from 26 institutions across Europe are joining forces to investigate the impact of hydroelectric power plants on different ecosystems. Project coordinator Prof. Peter Rutschmann from the Technical University of Munich (TUM) tells us why they are using ultrasound to track fish, how hydroelectric power plant operators can benefit from the insights and how this project can help resolve the conflict between ecologically friendly electricity production and nature conservation.

Hydroelectric power seems to be an increasingly contentious topic in Europe. Why is this?

Back in 2000, the European Water Framework Directive stipulated that a good or very good ecological status must be achieved for all bodies of water. A key factor here is ensuring the undisturbed migration of organisms and sediment transport. We are now entering a phase where concrete plans have to be realized. At the same time, the concessions for many hydroelectric power plants are expiring – these are facilities that were built decades ago and do not yet meet the requirements of the Directive.

Can’t these hydroelectric power plants be modified to allow the migration of organisms?

Yes, the majority can be. However, there is a lot of debate about how much passage is required to ensure sustainable populations. One reason, why these conflicting interests are not easy to balance, is: Even though we have been using hydroelectric power for a long time, we still don’t know enough about many aspects of this technology. For example, there is very little scientific evidence documenting the number of species-specific fish that are harmed by specific types of hydroelectric power plants and the impact this has on the survival of entire populations.

In addition, the purpose of some plants and subsequently the way they are used is changing as we transition to a greener energy mix. Energy storage systems that had previously been used to balance out energy fluctuations in the long term are now being deployed as short-term solutions when wind turbines come to a standstill. This means that water levels can drop very quickly, causing juvenile fish to be stranded on gravel banks.

What issues do you want to address in the “FIThydro” research project?

We want to find out which technologies and concepts provide the best solutions for different scenarios. For example, there are two ways of preserving fish populations. You either protect the animals from the plant’s turbines or you make sure that the population can regenerate effectively. To do this, you have to make provisions for new spawning grounds, for example by reconnecting old tributaries to a main body of water.

We have to find out what works best at different locations for which animals and how much it will cost. In order to do this, we are also developing a new ultrasound technology at TUM that will enable us to determine the position, swimming routes, size and even the type of fish from a distance of several hundred meters without having to fit transmitters to the animals.

However, investigating all potential scenarios in Europe sounds like a huge task.

We are analyzing seventeen test case sites, each with different power plant set-ups and different challenges. We have selected four regions for this that represent the whole of Europe: Scandinavia as the largest producer of hydropower, the Alps region with its high water drops, the Iberian Peninsula as a dry region and France and Belgium representing the European Plain. All of these areas have their own unique characteristics with regard to river topographies, ecosystems and energy management. Each country’s sense of environmental awareness also differs, which is why we have social scientists involved in our project in addition to engineers and natural scientists.

What happens after the study? Not all power plant operators want to read dense academic papers.

We aim to create an online tool that can be used to plan and evaluate hydroelectric power plants. Once users have entered information about the power plant and its surroundings, the system will then determine the risk to the fish living there and evaluate the measures promising the most benefits to the ecosystem while enabling the power plant to operate cost effectively. This will enable us to find solutions that are grounded in science and factor in the interests of all stakeholders.

Do you think this will lead to more hydroelectric power plants being built?

The greatest potential for new sites is mainly in Southeast Europe. However, expansion isn’t the core focus of this project. It is about a much more fundamental issue. We live in an environment that has been and still is being massively changed by humans. Our aim is to put a flexible, professional management system in place that will minimize ecological impacts.

More Information:

Thirteen research institutes and thirteen companies in Austria, Belgium, Estonia, France, Germany, Norway, Portugal, Spain, Switzerland and the UK are taking part in the “Fish Friendly Innovative Technologies for Hydropower (FIThydro)” research project. The initiative is coordinated by the Chair of Hydraulic and Water Resources Engineering at the Technical University of Munich (TUM). TUM’s Chair of Aquatic Systems Biology, Chair of Agricultural Production and Resource Economics, Chair of Non-destructive Testing as well as the Munich Center for Technology in Society (MCTS) are also involved. The project has received EUR 7.2 million in funding from the EU research program “Horizon 2020” and the Swiss National Science Foundation (SNF).


Prof. Dr. Peter Rutschmann
Technical University of Munich (TUM)
Chair of Hydraulic and Water Resources Engineering
Tel: +49 89 289 23161


High resolution images for journalists

Technical University of Munich

Article at

Hydropower plant Altusried on the Iller.

On the way to fish-friendly hydropower

In the Europe-wide project "FIThydro" coordinated by the Technical University of Munich (TUM), researchers worked with industrial partners to study existing hydroelectric power plants. Based on their results, they have...

Prof. Geist, Dr. Pander and Dr. Müller (l.t.r.) using side-sonar to cartograph the habitat of the fish

Are there hydroelectric power plants that are fish-friendly?

Modern hydroelectric power plants do not always protect fish better than conventional ones. In addition to the technologies employed, the specific location of the plant and the fish species being present at that location ...

Shaft power plant in the Loisach near Großweil in Bavaria

First shaft power plant connected to the grid

The world’s first shaft hydropower plant has gone on stream in Germany. As well as producing green energy, the plant is also kinder to the natural environment than conventional hydropower plants. The turbine is concealed in...

The picture shows air bubbles in water.

TUM + FAU: Bavaria combines forces in hydrogen research

The Bavarian government officially presented its hydrogen strategy in Nuremberg on Friday. An important aspect is the promotion of mobility research. The Technical University of Munich (TUM) and the...

Prof. Jörg E. Drewes is researching new methods for purifying treated wastewater.

"Cities are increasingly reaching their limits"

Extreme dry spells, shorter spring periods: Groundwater tables in Germany are declining. Prof. Jörg E. Drewes of the Chair of Urban Water Systems Engineering at the Technical University of Munich (TUM) explains why the use...

Solarmodule und Windkrafträder

Public-sector research boosts cleantech start-ups

Cleantech start-ups in the USA that cooperate with government research agencies outperform their competitors both in terms of patents and funding. That is the conclusion of a study by the Technical University of Munich...

Windräder, Solarmodule und Wasserstoffspeicher

How power-to-gas technology can be green and profitable

Hydrogen production based on wind power can already be commercially viable today. Until now, it was generally assumed that this environmentally friendly power-to-gas technology could not be implemented profitably....

Das geothermische Potenzial in München, bei Nutzung einer Grundwasser-Wärmepumpe.

A treasure map for the energy revolution

Near-surface geothermal energy could cover a large portion of our energy requirements. Nevertheless, this regenerative energy source is not used optimally. In order to change that, scientists in the EU project GRETA...

Das Jena Experiment beweist aufgrund seiner Breite erstmals, dass ein Verlust der Artenvielfalt negative Konsequenzen für viele einzelne Komponenten und Prozesse in Ökosystemen hat. (Foto: Das Jena Experiment)

Loss of species destroys ecosystems

How serious is the loss of species globally? Are material cycles in an ecosystem with few species changed? In order to find this out, the "Jena Experiment" was established in 2002, one of the largest biodiversity...

Im Windkanal lassen sich die Wechselwirkungen zwischen Windkraftanlagen mit Hilfe von Modellen erforschen.

Wind turbines: It’s a group effort

Often hundreds of rotors can be installed in a typical wind farm. A little known fact, however, is that the shadowing caused by the wind turbine rotors impacts the performance of neighboring turbines and reduces their...

Dr. Katharina Aubele, Projektkoordinatorin der Geothermie Allianz Bayern.

Powering the energy revolution with heat from the Earth

Temperatures in the Earth's interior reach thousands of degrees Celsius. Geothermal technology makes use of this energy. It has enormous potential particularly in Bavaria. In response to an initiative of the Bavarian state...