TUM – Technical University of Munich Menu
Saliva contains various antimicrobial molecules. (Picture: iStock/Cunaplus M. Faba)
Saliva contains various antimicrobial molecules. (Picture: iStock/Cunaplus M. Faba)
  • Research news

Flavoring substances stimulate immune defensesMore than just a good flavor

Not only do citric acid and spicy 6-gingerol from ginger add special flavors to food and beverages; both substances also stimulate the molecular defenses in human saliva. That is the result of a human clinical trial by a team from the Technical University of Munich (TUM) and the Leibniz-Institute for Food Systems Biology.

Human saliva is a complex, watery mixture made up of vastly different components. In addition to mucosal and immune cells, it contains a large number of molecules that perform a wide variety of biological functions. Not only does saliva play an important role in dietary intake, but it is also crucial to maintaining the health of one’s teeth, gums, and oral mucosa.

At the same time, it also represents the first bulwark against external pathogens. For this purpose, saliva contains various antimicrobial molecules, including the antibacterial lysozyme. These are part of the innate molecular immune system.

It has been proven that factors such as age, health, and what someone eats and drinks influence the composition of saliva. However, little is known about the effects of individual food constituents.

In order to learn more about this, a team of scientists led by Professor Thomas Hofmann, head of the Leibniz-Institute for Food Systems Biology at TUM, studied the influence of the following flavors on the composition of human saliva: citric acid (sour), the sweetener aspartame (sweet), iso-alpha acids (bitter), the flavor enhancer monosodium glutamate (umami), table salt (salty), 6-gingerol (spicy), and the substances contained in Sichuan pepper —hydroxy-alpha-sanshool (tingling) and hydroxy-beta-sanshool (numbing).

How the Molecular Defense System is Activated in Saliva


As the scientists first demonstrated by combining salivary flow measurements, proteome analyses and bioinformatic evaluations, all the substances under investigation modulate the protein composition of saliva to a greater or lesser extent.

Analyses of the biological function of the salivary proteins affected by modulation also showed that the changes triggered by citric acid and 6-gingerol activate the molecular defense system in saliva.

For example, 6-gingerol increased the activity of an enzyme that converts the thiocyanate contained in saliva into hypothiocyanite, approximately tripling the amount of the antimicrobial and fungicidal hypothiocyanite in saliva. The changes triggered by citric acid, on the other hand, caused lysozyme levels in saliva to increase tenfold.

Studies on bacterial cultures have shown for the first time that this increase is sufficient to almost completely prevent the growth of Gram-positive bacteria. Lysozyme acts against this type of bacteria by destroying their cell walls.

“Our new findings show that flavoring substances already display biological effects in the oral cavity that go far beyond their known sensory properties,” said Professor Hofmann from the Chair of Food Chemistry and Molecular Sensory Science at TUM. The food chemist explains that one of the goals of food systems biology is to further investigate these using the latest analytical methods. In his opinion, this is the only way to find new approaches for the long-term production of food whose ingredient and function profiles are aligned with the health and sensory needs of consumers.

Publication:

Matthias Bader, Andreas Dunkel, Mareike Wenning, Bernd Kohler, Guillaume Medard, Estela del Castillo, Amin Gholami, Bernhard Kuster, Siegfried Scherer and Thomas Hofmann: Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli, Journal of Agricultural and Food Chemistry 6/2018. DOI: 10.1021/acs.jafc.8b02092

Contact:

Prof. Thomas Hofmann
Chair of Food Chemistry and Molecular Sensory Science
Leibniz-Institute for Food Systems Biology at TUM
Mail: thomas.hofmann(at)tum.de
Phone: +49 (89) 289 - 22201 oder
Phone 2: +49 (8161) 71-2902

Corporate Communications Center

Technical University of Munich

Article at tum.de

Blühende Rapspflanze, Versuchsgut Roggenstein der TU München. (Bild: A. Heddergott / TUM)

Bitter rapeseed

Rapeseed doesn't just contain oil but high-quality protein, too. However, protein extracts from rapeseed have an intense, bitter off-taste. A team led by food chemist Thomas Hofmann has now identified the substance that is...

Prof. Thomas Hofmann wird im Oktober 2019 neuer Präsident der TUM. (Bild: A. Heddergott / TUM)

Thomas Hofmann elected as TUM’s new President

The Board of Trustees of the Technical University of Munich (TUM) has elected Prof. Thomas Hofmann (50) as the new President of TUM. The experienced university manager has held the position of Senior Vice President Research...

Der im Ingwer enthaltene Scharfstoff 6-Gingerol stimuliert ein Speichelenzym, das übelriechende Substanzen abbaut. (Bild: iStockphoto/ villagemoon)

Pungent tasting substance in ginger reduces bad breath

The pungent compound 6-gingerol, a constituent of ginger, stimulates an enzyme contained in saliva ¬– an enzyme which breaks down foul-smelling substances.  It thus ensures fresh breath and a better aftertaste. Citric acid,...

Je trockener die Sommer, desto häufiger kommt es zu Waldbränden wie auf dem Foto zu sehen im Sommer 2017 in Süditalien in der Region Basilikata. Sind Weinberge in der Nähe wie vorne links zu erkennen, nimmt der Rebstock die rauchigen Aromen auf, was sich jedoch erst am fertigen Produkt feststellen lässt. (Foto: iStock/ Angelafoto)

How forest fires spoil wine

If wine is cultivated in an area where forest fires occur more often, such as in Australia or Southern Italy, aromas that make the alcoholic drink unpalatable can develop in the finished product. Until now, it wasn’t known...

Welche Geschmacks- und Aromastoffe stecken in Parmesan? Dem sind TUM-Wissenschaftler nun nachgegangen. (Foto: TUM/ A. Battenberg)

Complex cheese

What would Italian pasta be like without Parmesan? No other cheese compares when it comes to flavoring dishes. But why? This is precisely the question that prompted a study by chemists at the Technical University of Munich...

Wissenschaftler der TUM konnten erstmals klären, wie bei der Herstellung von Schokolade die Zutaten auf molekularer Ebene miteinander interagieren. (Foto: Joanna Wnuk/ Fotolia)

Molecular models come to the aid of chocolatiers

For many it’s simply irresistible and their favorite candy: chocolate.  Its success is presumably due not only to its taste but also to its smooth texture, which is achieved by a process known as conching and the addition...

Was macht das Aroma reifer Erdbeeren so unverwechselbar? Wissenschaftler haben herausgefunden, wie der Geruchsstoff auf molekularer Ebene gebildet wird.

Why strawberries smell like strawberries

You know that summer is here when juicy red strawberries start to appear on the shelves. In Germany, this seasonal fruit has never been more popular: on average 3.5 kilos per head were consumed in 2012 – a full kilogram...