An ERC grant project is investigating chromosomes. (Image: nobeastsofierce / Fotolia)
An ERC grant project is investigating chromosomes. (Image: nobeastsofierce / Fotolia)
  • Research news

Three ERC Starting Grants for projects in Biochemistry and NeuroscienceEuropean success for "MaxPlanck@TUM"

Three researchers from the "MaxPlanck@TUM" program will receive funding from the European Research Council (ERC). Along with three other members of the Technical University of Munich (TUM) they won ERC Starting Grants in this year's round of competition. Unique in Germany, "MaxPlanck@TUM" is a program for young professors run by the Max Planck Society and TUM. 

In „MaxPlanck@TUM“ excellent young scientists are appointed to lead a Max-Planck research group and in parallel to an Assistant Professorship at TUM. This provides them with outstanding research opportunities and at the same time clear career perspectives in the  TUM Tenure Track system: If they receive a positive assessment after a period of six years, the transition to a permanent, higher-paying professorship is guaranteed. Four of the current nine scientists in the "MaxPlanck@TUM" program have now already won an ERC Grant, one of the most important European research subsidies. 

This year in TUM engineering sciences Prof. Matthias Nießner, Prof. Antonia Wachter-Zeh und Prof. Majid Zamanihad already won ERC Starting Grants. Starting Grants are intended for early-career scientists and are endowed with as much as € 1.5 million. The latest awards bring the total number of ERC Grants received by TUM in various categories to 96 ERC Grants. In detail, that's 22 Advanced Grants, 21 Consolidator Grants, 45 Starting Grants and 8 Proof of Concept Grants.

In the "MaxPlanck@TUM " programme the following projects have now been awarded:

Prof. Karl Duderstadt

The unique instructions for each organism are stored in DNA. To fit in cells, the DNA is twisted and compacted into chromosomes. During cell division, a large molecular machine, known as the replisome, unpackages and duplicates chromosomes to produce copies for the daughter cells. Mistakes during this process can have disastrous consequences leading to unstable inheritance and underlying many severe human diseases. The structure and operation of the molecular machine that conducts this process is not well understood. Karl Duderstadt, head of the research group "Structure and Dynamics of Molecular Machines", plans to change this by employing cutting edge imaging methods to directly observe these machines in action. These studies will reveal how the vital genetic code of life is faithfully copied and the origin of mistakes that can have disastrous consequences for future generations.

Karl Duderstadt is Professor for Experimental Biophysics at TUM and Max Planck Research Group Leader at the MPI for Biochemistry.

Prof. Julijana Gjorgjieva

How are neuronal circuits constructed and organized during the early post-natal stage of human development? Prof. Julijana Gjorgjieva addresses this question in her project "NeuroDevo". Together with her team she will apply a combination of data analysis, theory and modeling. Another project objective is ascertaining how neuronal circuits are changed by intact and disturbed sensory activities. In this context Gjorgjieva analyzes longitudinal sectional images of individual neurons and network activities via a synthesis of data from three collaborating laboratories. 

Prof. Gjorgjieva and her team are searching for new aspects of such activity that drive the refinement of circuits over a longer period of time. In addition, the group will investigate how activity and circuit properties mutually influence one another and how individual components impact the organization of circuits.

Julijana Gjorgjieva is Professor for Computational Neuroscience at TUM and Leader of the research Group "Computation in Neural Circuits" at the Max Planck Institute for Brain Research.

Prof. Danny Nedialkova

Proteins execute the vast majority of processes in a living cell. Although they are made as linear chains of amino acids, they fold into various three-dimensional shapes to accomplish their tasks. Failures in this folding process can be catastrophic for cells and build-up of misfolded proteins is a hallmark of aging and neurological disorders.  Proteins start to fold as they are synthesized on ribosomes, the cellular machines that translate messenger RNA into amino acid chains. 

Danny Nedialkova and her research group aim to understand how events during messenger RNA translation shape cellular proteomes. After various experiments, the team hopes to define how protein synthesis and folding work together in healthy cells and how this synergy’s failure causes diseases.

Danny Nedialkova is Professor for Biochemistry of Gene Expression at TUM and Research Group Leader at the MPI for Biochemistry.

More Information:

Corporate Communications Center

Technical University of Munich

Article at

Simulierte Rauchwolken

Cutting-edge research from robotics to simulated flows

The European Research Council (ERC) will fund three projects by scientists from the Technical University of Munich (TUM) through prestigious Advanced Grants. Two of the projects deal with new approaches to cancer treatment....

Hauptgebäude der TUM

100th tenure track professorship at TUM

The Technical University of Munich (TUM) has recruited its 100th tenure track professor: Jana Giceva (31), a computer scientist, who joins TUM from Imperial College London. Half of all of the selected academics have come to...

Prof. Hendrik Dietz und sein Team im Labor (Bild: U. Benz / TUM)

TUM pursues new approach to developing international talent

With the Max Planck School "Matter to Life", five partners, including the Technical University of Munich (TUM), are initiating a new model to train outstanding young academics in a largely unexplored field of research....

Prof. Thomas Hofmann wird im Oktober 2019 neuer Präsident der TUM. (Bild: A. Heddergott / TUM)

Thomas Hofmann elected as TUM’s new President

The Board of Trustees of the Technical University of Munich (TUM) has elected Prof. Thomas Hofmann (50) as the new President of TUM. The experienced university manager has held the position of Senior Vice President Research...

Logo des ERC

EU funding for young engineering researchers

The Technical University of Munich (TUM) receives special recognition for excellent research in the engineering sciences: The European Research Council (ERC) has awarded future funding to three projects from the TUM...

GERDA-Detektor in Gran Sasso

EU funding for pioneering projects

Four projects driven by the Technical University of Munich (TUM) are set to receive highly endowed Advanced Grants from the European Research Council (ERC). The research topics range from verification methods for the...

Illustration von Nanodrähten (blau), die Teil eines integrierten photonischen und quantenoptischen Schaltkreises sind.

Outstanding research – from nanowires to supernovae

Five new research projects proposed by scientists at the Technical University of Munich (TUM) were impressive enough to be awarded Consolidator Grants by the European Research Council (ERC) this year. The selected projects...

Karl Duderstadt und Susanne Mertens, zwei der ersten sieben Forscherinnen und Forschern bei MaxPlanck@TUM.

MaxPlanck@TUM on course

Premiere for the “Max Planck@TUM” alliance: The Max Planck Society (MPG) and the Technical University of Munich (TUM) have appointed seven outstanding scientists as leaders of Max Planck Research Groups and tenure track...

Junge Wissenschaftler im Gespräch

On tenure track at TUM as a Max Planck Research Group Leader

An excellently equipped lab at a Max Planck Institute, interinstitutional networking with fellow scientists and defined career prospects at a University of Excellence: the Max Planck Society (MPG) and Technische Universität...