TUM – Technical University of Munich Menu
Percy Knolle, Professor for Molecular Immunology at TUM, investigates the cause of liver failure. (Image: A. Heddergott / TUM)
Percy Knolle, Professor for Molecular Immunology at TUM, investigates the cause of liver failure. (Image: A. Heddergott / TUM)
  • Research news

Hepatitis: liver failure attributable to compromised blood supplyLiver failure caused by attack on blood vessel cells

In severe cases, a viral hepatitis infection can result in liver failure. A team from the Technical University of Munich (TUM) has now discovered how this occurs: by immune cells attacking cells in the vascular system, which disrupts the organ’s blood and nutrient supply. This is responsible for the overwhelming damage that causes the liver to fail. Using an animal model, the researchers were then able to identify an agent to prevent this lethal process.

An infection of the liver with viral hepatitis, such as the hepatitis B virus, can progress in very different ways: the liver inflammation (hepatitis) can heal again without any problems; become chronic and require lifelong medication; or take a fulminant - i.e. potentially fatal - course. In the latter case, the immune-mediated damage to the liver is so severe that the organ fails, leaving a liver transplant as the last remaining treatment option.


Hepatitis viruses target the liver cells, more specifically hepatocytes. The immune system tries to bring the infection under control by attacking and destroying the infected liver cells with the help of certain immune cells, known as killer T-cells. It was previously assumed that this process was also responsible for the severe organ damage during fulminant hepatitis. Now, though, Dr. Dirk Wohlleber, Research Group Leader and Prof. Percy Knolle, both at the Institute of Molecular Immunology at TUM, have arrived at a completely different explanation. In collaboration with colleagues from the universities of Würzburg, Bonn (Germany) and Melbourne (Australia), they discovered that this organ failure is not in fact caused by the death of liver cells, but by defects in the vascular (blood vessel) system.

Blood supply disrupted by immune cells

The liver is home to important cells called liver sinusoidal endothelial cells, or LSECs for short. These connect the cells of the liver to the vascular system and regulate the exchange of nutrients and oxygen with the blood. They also have the ability to present small fragments of viruses on their outer membrane, in a similar way to immune system cells. The researchers observed that the killer T-cells specifically detected these viral particles, mistaking the LSECs for infected liver cells and destroying them. To this end, they used proteins that integrate into the cell membrane of the target cell and form a pore. Known as perforins, these proteins perforate the membrane and destroy the cell.


“We observed that the elimination of LSECs by the immune cells has an enormous impact on the liver tissue. Blood flow within the liver is hugely disrupted, with large numbers of liver cells – even those not infected – dying as a result. This immune response has a much more dramatic effect than the attack on liver cells that are actually infected,” Wohlleber explains. This discovery was made possible by a new mouse model specially developed by the researchers to replicate the fulminant course of viral hepatitis.

Perforin inhibitors as a therapeutic tool

“Only now that we have pinpointed the actual destructive mechanism in acute hepatitis can we consider new treatment strategies and specifically target this process,” underscores Knolle. Using their mouse model, the researchers were able to show that a new active substance can prevent fulminant hepatitis. This is a perforin inhibitor, which stops the killer T-cells from forming pores and thus safeguards the LSECs from attack. This agent successfully protected the mice from developing fulminant hepatitis, since the LSECs remained intact, preserving the blood supply to the liver cells.

Publication

M. Welz, S. Eickhoff, Z. Abdullah, J. Trebicka, K.H. Gartlan, J.A. Spicer, A.J. Demetris, H. Akhlaghi, M. Anton, K. Manske, D. Zehn, B. Nieswandt, C. Kurts, J.A. Trapani, P. Knolle, D. Wohlleber & W. Kastenmüller: Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis, Nature Communications, November 15, 2018, DOI: 10.1038/s41467-018-07213-x (open access)

More Information

Contact

Prof. Percy A. Knolle, MD
Chair of Molecular Immunology
Technical University of Munich and Rechts der Isar university hospital
Tel.: +49 89 4140-6920
percy.knolle(at)tum.de

High-resolution image

https://mediatum.ub.tum.de/1469996

Corporate Communications Center

Technical University of Munich Dr. Vera Siegler
vera.siegler(at)tum.de

Article at tum.de

The image shows in a HBV-specific T cell (green) attacking a target cell, in which viral proteins are produced (red) and HBV negative cells (blue).

Checkmate for hepatitis B viruses in the liver

Researchers from Munich, Hamburg and Heidelberg have for the first time succeeded in conquering a chronic infection with the hepatitis B virus (HBV) in a mouse model. The team showed in its publication, that T-cell therapy...

Eine therapeutische Imfpung gegen Hepatitis B könnte weltweit Millionen Menschen helfen. (Bild: tommyS / pixelio.de)

Treatment for chronic viral infections

Around 260 million people worldwide suffer from chronic Hepatitis B, which is currently incurable. A team from the Technical University of Munich (TUM) and the Helmholtz Zentrum München has developed a therapeutic vaccine...

Prof. Percy Knolle (Mitte) und sein Team im Institut für Molekulare Immunologie / Experimentelle Onkologie.

“Master switch” for chronic infections

Certain viral diseases have a tendency to become chronic – HIV being a notable example. The patient’s immune response is simply not effective enough to eliminate the virus permanently. Researchers at the University of Bonn...

Prof. Ulrike Protzer und Dr. Felix Bohne überprüfen die Blutproben-Ergebnisse von HCV-infizierten Leberempfängern. (Bild: E. Mitterwallner / TUM)

Virus infection supports organ acceptance

Chronic hepatitis C virus infections are among the most common reasons for liver transplants. Because existing viruses also infect the new liver, the immune system is highly active there. Despite this, the new organ is not...

Prof. Ulrike Protzer (im Bild) und Prof. Mathias Heikenwälder konnten die virale DNA in Leberzellen zerstören. (Foto: TUM)

Attack on hepatitis B virus DNA

Scientists from the Technische Universität München and the Helmholtz Zentrum München have discovered how the viral DNA of the hepatitis B virus (HBV) can be degraded in the cell nucleus of liver cells, consequently allowing...