TUM – Technical University of Munich Menu
Veränderung des optoakustischen Signals von phototrophen Bakterien durch die Aufnahme von Makrophagen (außerhalb von Makrophagen: blau; innerhalb von Makrophagen: rot). Die in der oberen Reihe schematisch dargestellte Situation kann sowohl im Mikroskop (2. Reihe) als auch mittels MSOT (unten) nachverfolgt werden. Dabei gibt die Veränderung des MSOT-Signals (3. Reihe) Auskunft über die Verteilung von Rhodobacter-Zellen, die sich innerhalb und außerhalb von Makrophagen befinden und damit über ihre Lokalisation und Aktivität. (Bild: Helmholtz Zentrum München)
Veränderung des optoakustischen Signals von phototrophen Bakterien durch die Aufnahme von Makrophagen (außerhalb von Makrophagen: blau; innerhalb von Makrophagen: rot). Die in der oberen Reihe schematisch dargestellte Situation kann sowohl im Mikroskop (2. Reihe) als auch mittels MSOT (unten) nachverfolgt werden. Dabei gibt die Veränderung des MSOT-Signals (3. Reihe) Auskunft über die Verteilung von Rhodobacter-Zellen, die sich innerhalb und außerhalb von Makrophagen befinden und damit über ihre Lokalisation und Aktivität. (Bild: Helmholtz Zentrum München)
  • Research news

Scientists use bacteria to characterize tumor regions

Purple bacteria visualize ‘big eaters’

Tumors are very different at cellular and molecular level making them difficult to diagnose and treat. A team from Technical University of Munich (TUM) and the Helmholtz Zentrum München has now shown that harmless purple bacteria are capable of visualizing aspects of this heterogeneity in the tumors. With the aid of optoacoustic imaging, the researchers used these microorganisms to visualize cells of the immune system, so-called macrophages that also play a role in tumor development.

Many cancers form solid tumors. Inside, such tumors reveal major differences at the cellular and molecular level. One of these concerns the localization and activity of macrophages (Greek for ‘big eaters’). They take up pathogens like viruses and bacteria and digest them inside. Although these cells are essential for a healthy immune system, they also play a key role in tumor development.


With the aid of bacteria the scientists have developed a new imaging method, which indicates where such macrophages are present and active. The Jülich Research Center and the Heinrich Heine University Düsseldorf were also involved in the study which was published in Nature Communications.

Harmless bacteria as tool for imaging technique

“We were able to demonstrate that purple bacteria of the genus Rhodobacter, which are harmless to humans, are suitable as indirect markers of macrophage presence and activity,” says Dr. Andre C. Stiel, scientists at the TUM Chair of Biological Imaging of Prof. Vasilis Ntziachristos and head of the Cell Engineering Group at the Institute of Biological and Medical Imaging at Helmholtz Zentrum München. Rhodobacter bacteria produce large quantities of the photosynthetic pigment bacteriochlorophyll a. This pigment enabled the researchers to detect bacteria in a tumor by means of multispectral optoacoustic tomography (MSOT).


During a MSOT scan, light is initially converted into sound, then into visual information. Initially, a weak, pulsating laser beam is directed towards the body. When the beam encounters molecules and cells, they heat up minimally and respond with minimal vibrations, which in turn generate acoustic signals. These are then picked up by sensors and converted into images. The way in which the individual cells and molecules react to the laser depends on their optical properties – in this case, for example, on the properties of bacterial pigments.

Macophages change surroundings of bacteria in the tumor

How does the principle of the tumor characterization work? Macrophages engulf bacteria as part of their natural scavenging activity, which is known as phagocytosis. This alters the surroundings of the bacteria, their absorption of electromagnetic radiation and, as a result, also the optoacoustic signal. Rhodobacter bacteria thus act like sensors for scientists, providing them with information about the presence and activity of macrophages.


In future, bacteria may be able to reveal the location of a tumor and also detect increased macrophage activity. Depending on their localization, the macrophages could provide information about unwelcome inflammations or the desired response to immunotherapies, and could ultimately be used to improve treatment strategies.

Publication:

Lena Peters et al. (2019): Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nature Communications, DOI: 10.1038/s41467-019-09081-5

Contact:

Dr. Andre C. Stiel
Scientist at Chair of Biological Imaging (Prof. Vasilis Ntziachristos)
Technical University of Munich
Tel. +49 89 3187 3972
andre.stiel(at)helmholtz-muenchen.de

Corporate Communications Center

Technical University of Munich Dr. Vera Siegler
vera.siegler(at)tum.de

Article at tum.de

Infrared thermal images show elevated tumor (yellow) temperature in mice after laser irradiation in with OMV-melanin treated mice (right image). The image on the left shows a mouse treated with OMVs without melanin.

Black nanoparticles slow the growth of tumors

The dark skin pigment melanin protects us from the sun’s damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a...

MSOT image of brown adipose tissue

Brown adipose tissue made transparent

Brown adipose tissue has played a key role in prevention research since its presence was first documented in adults. However, there was no non-invasive method of measuring its heat generation. A team at the Technical...

Kalziumwellen – ein neuer Sensor verwandelt Licht in Schall, um Kalziumflüsse im Körper sichtbar zu machen. (Bild: B. van Rossum, G. Westmeyer / TUM)

Visible signals from brain and heart

Key processes in the body are controlled by the concentration of calcium in and around cells. A team from the Technical University of Munich (TUM) and the Helmholtz Zentrum München have developed the first sensor molecule...

Eine eMSOT-AUfnahme, in der Sauferstoff in Gewebe farblich markiert ist. (Foto: Tzoumas / TUM)

A look beneath the skin

Learning how to look inside a body without having to cut it open is still an important part of medical research. One of the great challenges in imaging remains the visualization of oxygen in tissue. A team led by Prof....