TUM – Technical University of Munich Menu
The first authors of the project in their laboratory at the Catalysis Research Center (CRC) of TUM: Dr. Batyr Garlyyev, Kathrin Kratzl and Marlon Rück (f.l.t.r.)
The first authors of the project in their laboratory at the Catalysis Research Center (CRC) of TUM: Dr. Batyr Garlyyev, Kathrin Kratzl and Marlon Rück (f.l.t.r.)
Image: A. Eckert / TUM
  • Research news
  • Reading time: 3 MIN

Modelling leads to the optimum size for platinum fuel cell catalystsActivity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus electricity from wind power plants. However, the platinum used in fuel cells is rare and extremely expensive, which has been a limiting factor in applications up to now.

A research team at the Technical University of Munich (TUM) led by Roland Fischer, Professor for Inorganic and Organometallic Chemistry, Aliaksandr Bandarenka, Physics of Energy Conversion and Storage and Alessio Gagliardi, Professor for Simulation of Nanosystems for Energy Conversion, has now optimized the size of the platinum particles to such a degree that the particles perform at levels twice as high as the best processes commercially available today.

Ideal: A platinum egg only one nanometer long

In fuel cells, hydrogen reacts with oxygen to produce water, generating electricity in the process. Sophisticated catalysts at the electrodes are required in order to optimize this conversion. Platinum plays a central role in the oxygen-reduction reaction.

Platin-nanoparticles with 40 atoms.
Platin-nanoparticles with 40 atoms.
Image: B. Garlyyev / TUM

Searching for an ideal solution, the team created a computer model of the complete system. The central question: How small can a cluster of platinum atoms be and still have a highly active catalytic effect? "It turns out that there are certain optimum sizes for platinum stacks," explains Fischer.

Particles measuring about one nanometer and containing approximately 40 platinum atoms are ideal. "Platinum catalysts of this order of size have a small volume but a large number of highly active spots, resulting in high mass activity," says Bandarenka.

Interdisciplinary collaboration

Interdisciplinary collaboration at the Catalysis Research Center (CRC) was an important factor in the research team's results. Combining theoretical capabilities in modelling, joint discussions and physical and chemical knowledge gained from experiments ultimately resulted in a model showing how catalysts can be designed with the ideal form, size and size distribution of the components involved.

In addition, the CRC also has the expertise needed to create and experimentally test the calculated platinum nano-catalysts. "This takes a lot in terms of the art of inorganic synthesis," says Kathrin Kratzl, together with Batyr Garlyyev and Marlon Rück, one of the three lead authors of the study.

Twice as effective as the best conventional catalyst

The experiment exactly confirmed the theoretical predictions. "Our catalyst is twice as effective as the best conventional catalyst on the market," says Garlyyev, adding that this is still not adequate for commercial applications, since the current 50 percent reduction of the amount of platinum would have to increase to 80 percent.

In addition to spherical nanoparticles, the researchers hope for even higher catalytic activity from significantly more complex shapes. And the computer models established in the partnership are ideal for this kind of modelling. "Nevertheless, more complex shapes require more complex synthesis methods," says Bandarenka. This will make computational and experimental studies more and more important in the future.

Publications:

Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction
Batyr Garlyyev, Kathrin Kratzl, Marlon Rück, Jan Michalicka, Johannes Fichtner, Jan M. Macak, Tim Kratky, Sebastian Günther, Mirza Cokoja, Aliaksandr S. Bandarenka, Alessio Gagliardi and Roland A. Fischer
Angewandte Chemie May 3, 2019 – DOI: 10.1002/anie.20190492

More information:

The work was supported  by the German Research Foundation (DFG) as part of the International Graduate School of Science and Engineering of the Technical University of Munich (TUM), the Czech Republic's Ministry for Youth, Education and Sports and the Central European Institute of Technology (CEITEC) in Brno (Czech Republic).

High resolution images:

https://mediatum.ub.tum.de/1509771

Corporate Communications Center

Technical University of Munich Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Contacts to this article:

Prof. Dr. Roland A. Fischer
Director of the Catalysis Research Center (CRC)
Chair for Inorganic and Organometallic Chemistry
Technical University of Munich (TUM)
Ernst-Otto-Fischer-Straße 1, 85748 Garching,
Tel.: +49 89 289 13080
roland.fischer(at)tum.de


Prof. Dr. Aliaksandr S. Bandarenka
Physics of Energy Conversion and Storage
Technical University of Munich (TUM)
James-Franck-Straße 1, 85748 Garching
Tel.: +49 89 289 12531
bandarenka(at)ph.tum.de

Article at tum.de

Windräder, Solarmodule und Wasserstoffspeicher

How power-to-gas technology can be green and profitable

Hydrogen production based on wind power can already be commercially viable today. Until now, it was generally assumed that this environmentally friendly power-to-gas technology could not be implemented profitably....

Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer – Bild: Federico Calle Vallejo / Univ. Leiden

Efficiency of water electrolysis doubled

Water electrolysis has not yet established itself as a method for the production of hydrogen. Too much energy is lost in the process. With a trick researchers of the Technical University of Munich (TUM), the Ruhr University...

Die unterschiedliche Zahl gleichartiger Nachbarn hat einen wichtigen Einfluss auf die katalytische Aktivität von Oberflächenatomen eines Nanopartikels – Bild: David Loffreda, CNRS, Lyon

Faster design – better catalysts

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Catalyst design...