Nanodrähte aus Germanium-Silizium-Legierung mit hexagonalem Kristallgitter können Licht erzeugen. Für Photonik-Chips könnten sie direkt in die gängigen Prozesse der Silizium-basierten Halbleitertechnologie integriert werden.
Nanodrähte aus Germanium-Silizium-Legierung mit hexagonalem Kristallgitter können Licht erzeugen. Für Photonik-Chips könnten sie direkt in die gängigen Prozesse der Silizium-basierten Halbleitertechnologie integriert werden.
Bild: E. Fadaly / TU/e
  • Forschung
  • Lesezeit: 2 MIN

Photonische Chips dank Licht emittierender Silizium-Germanium-LegierungenLichtblick für die Chip-Industrie

Seit 50 Jahren suchen Forschende in aller Welt nach einer Möglichkeit, Laser aus Silizium oder Germanium zu bauen. Einem Team der Technischen Universität Eindhoven (TU/e) und der Technischen Universität München (TUM) ist es nun gelungen, eine Legierung aus Germanium und Silizium zu entwickeln, die Licht emittieren kann. Einen Siliziumlaser zu entwickeln, der in aktuelle Chips integriert werden kann, rückt damit erstmalig in greifbare Nähe.

Elektronische Chips heizen sich auf, wenn Daten übertragen werden. Der Laptop auf den Knien wird warm; Rechenzentren benötigen Kühlaggregate mit Megawatt-Leistung. Abhilfe schaffen könnte die Photonik, denn Lichtpulse erzeugen keine Abwärme.

Seit 50 Jahren bemüht sich die Forschung daher, Laser aus Silizium oder Germanium zu bauen. Bisher vergeblich. Silizium, das Arbeitspferd der Chip-Industrie, kristallisiert normalerweise in einem kubischen Kristallgitter. In dieser Form ist es für die Umwandlung von Elektronen in Licht nicht geeignet.

Zusammen mit Kolleginnen und Kollegen der Technischen Universität München sowie der Universitäten in Jena und Linz ist es Forschenden der Technischen Universität Eindhoven nun gelungen, Legierungen aus Germanium und Silizium zu entwickeln, die Licht emittieren können.

Entscheidend dafür war es, Germanium und Legierungen aus Germanium und Silizium mit hexagonalem Kristallgitter zu erzeugen. „Dieses Material hat eine direkte Bandlücke und kann daher selbst Licht erzeugen“, sagt Prof. Jonathan Finley, Professor für Halbleiter-Nanostrukturen und -Quantensysteme an der TU München.

Der Trick mit dem Template

Schon 2015 gelang es Prof. Erik Bakkers und seinem Team an der TU Eindhoven, hexagonales Silizium zu erzeugen. Dafür züchteten sie zunächst Nanodrähte aus einem anderen Material mit einer hexagonalen Kristallstruktur und überzogen diese mit einer Schicht aus Germanium und Silizium. Das darunter liegende Material zwang dabei auch der Germanium-Silizium-Legierung eine hexagonale Struktur auf.

Doch die Strukturen ließen sich zunächst nicht zum Leuchten anregen. Im Austausch mit den Kollegen am Walter Schottky Institut der Technischen Universität München, die während der Optimierung Generation für Generation die optischen Eigenschaften analysierten, gelang es schließlich das Herstellungsverfahren so zu verbessern, dass die Nanodrähte schließlich tatsächlich Licht ausstrahlen konnten.

„Inzwischen haben wir optische Eigenschaften erzielt, die fast mit Indiumphosphid oder Galliumarsenid vergleichbar sind“, sagt Bakkers. Einen Laser aus Germanium-Silizium-Legierungen zu bauen, der noch dazu in die gängigen Herstellungsprozesse integriert werden kann, erscheint damit nur noch eine Frage der Zeit.

„Wenn wir die elektronische Kommunikation auf einem Chip und von Chip zu Chip optisch erledigen können, so kann das die Geschwindigkeit um einen Faktor von bis zu 1000 erhöhen, sagt Jonathan Finley. „Darüber hinaus könnten durch die direkte Kopplung von Optik und Elektronik Chips für laserbasiertes Radar für selbstfahrende Autos, für chemische Sensoren zur medizinischen Diagnose oder zur Messung der Luft- und Lebensmittelqualität dramatisch günstiger werden.“

 

Publikationen:

Direct Bandgap Emission from Hexagonal Ge and SiGe Alloys
E. M. T. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. J. v. Tilburg, C. Mao, Y. Ren, V. T. v. Lange, S. Kölling, M. A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J. J. Finley, S. Botti, J. E. M. Haverkort, E. P. A. M. Bakkers.
Nature, 8. April 2020 – DOI: 10.1038/s41586-020-2150-y

Mehr Informationen:

Das Forschungsprojekt wurde unterstützt aus Mitteln des EU-Projekts SiLAS, des Marie Sklodowska Curie-Programms der EU, der Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), der Solliance Initiative des Energy research Centre of the Netherlands (ECN), des Holst Centers, der TU/e, der Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek (TNO), des Interuniversity Microelectronics Centre (IMEC), des Forschungszentrum Jülich und der niederländischen Provinz Nordbrabant. Das Deutsche Elektronen Synchrotron (DESY) Hamburg stellte Messzeit am Speicherring PETRA III zur Verfügung. Theoretische Berechnungen wurden auf dem SuperMUC Höchstleistungsrechner des Leibniz Supercomputing Center in Garching bei München durchgeführt.

Technische Universität München

Corporate Communications Center Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Kontakte zum Artikel:

Prof. Dr. Jonathan J. Finley
Walter Schottky Institut und Physik-Department
Technische Universität München
Am Coulombwall 4, 85748 Garching
Tel.: +49 89 289 127
jonathan.finley(at)wsi.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Fehlstellen in dünnen Molybdänsulfid-Schichten, erzeugt durch Beschuss mit Helium-Ionen, können als Nano-Lichtquellen für die Quantentechnologie dienen.

Licht in der Nanowelt

Einem internationalen Team um Alexander Holleitner und Jonathan Finley, Physiker an der Technischen Universität München (TUM), ist es gelungen, Lichtquellen in atomar dünnen Materialschichten auf wenige Nanometer genau zu…

Benedikt Mayer und Lisa Janker an der Epitaxieanlage im Walter Schottky Institut der TU München – Foto: Uli Benz / TUM

Nanolaser für die Informationstechnologie

Einen Nanolaser, der tausend Mal dünner ist als ein Haar, haben Physiker an der Technischen Universität München (TUM) entwickelt. Dank des ausgetüftelten Verfahrens wachsen die Nanodraht-Laser direkt auf Silizium-Chips.…

Elektron im Quanten-Punkt, beeinflusst von Kernspins der Umgebung – Grafik: Fabian Flassig / TUM

Quantencomputer aus gängigen Halbleitermaterialien

Physiker der Technischen Universität München, des Los Alamos National Laboratory und der Universität Stanford (USA) spürten in Halbleiter-Nanostrukturen Mechanismen auf, aufgrund derer gespeicherte Informationen verloren…