Ein Neuron mit Amyloid-Plaques. (Foto: Juan Gärtner/ Fotolia)
Ein Neuron mit Amyloid-Plaques. (Foto: Juan Gärtner/ Fotolia)
  • Forschung

Amyloidplaques bei Alzheimer und Diabetes: Neue Leitstrukturen für HemmstoffeMoleküle können Proteinaggregation unterdrücken

Wenn Proteine Ihre Raumstruktur verändern und verklumpen, entstehen sogenannte amyloide Fibrillen und Plaques. Diese „Proteinaggregationsprozesse“ schädigen Zellen und lösen Krankheiten wie Alzheimer oder Typ 2 Diabetes aus. TUM-Wissenschaftler unter der Leitung von Professorin Aphrodite Kapurniotu haben Moleküle entwickelt, die die Proteinaggregation unterdrücken. Diese Hemmstoffe könnten den Weg zu neuen Therapeutika gegen Alzheimer, Typ 2 Diabetes und weitere zelldegenerative Krankheiten ebnen.

Die Wissenschaftler haben 16 verschiedene peptidische Moleküle entworfen und untersucht, welche von ihnen die Verklumpung der mit Alzheimer- oder Diabetes Typ 2 assoziierten Proteine Amyloid-ß (Aß) und Insel-Amyloidpolypeptid (IAPP) verhindern. Die Moleküle wurden auf der Basis von wissenschaftlichen Arbeiten entworfen, die belegen, dass die beiden Proteine Aß und IAPP miteinander wechselwirken, und dass diese „Kreuzamyloid-Wechselwirkung“ die Verklumpung beider Proteine unterdrückt.

Die Forscher haben für ihre Entwürfe spezielle kurze Sequenzregionen von IAPP gewählt, die den Kernregionen der Wechselwirkung mit dem Alzheimer-Protein entsprechen. Diese sogenannten „Hot-Spot-Segmente“, wurden dann miteinander durch spezielle Peptidsegmente chemisch verknüpft mit dem Ziel die IAPP-Kreuzamyloid-Wechselwirkungsfläche nachzuahmen und zu optimieren.


Hemmstoffe verhindern gefährliche Plaquebildung, die Alzheimer und Diabetes begünstigen

Das Team um Aphrodite Kapurniotu, Professur für Peptidbiochemie am Wissenschaftszentrum Weihenstephan konnte in Zusammenarbeit mit Forschern um Bernd Reif, Professur für Festkörper-NMR-Spektroskopie der TU München und Professor Gerhard Rammes aus der Anesthesiologie am Klinikum rechts der Isar bei seinen Entwürfen hochpotente Inhibitoren des Protein-Verklumpungsmechanismus identifizieren: Drei der Peptid-Designentwürfe verhinderten die zytotoxische Verklumpung beim Alzheimer- und Diabetes Typ 2-Peptid zugleich. Vier weitere wiederum hemmten lediglich selektiv die Selbstassoziation von Aß und eines bremste selektiv die Verklumpung bei IAPP.

Die Ergebnisse zeigen eine neuartige Klasse von Peptidleitstrukturen auf, die die Fehlfaltung und Verklumpung pathologisch relevanter Amyloidproteine bei Alzheimer und beim Typ 2 Diabetes hemmen. Deshalb könnten sie sich prinzipiell zur Entwicklung von Therapeutika eignen. Denkbar ist auch, dass mit dem entwickelten Inhibitorkonzept Moleküle, die die krankheitsassoziierten Wechselwirkungen anderer Proteine hemmen, entworfen werden können.

Über Ihre Ergebnisse berichten die Forscher in der Fachzeitschrift Angewandte Chemie. Weitere Studien sind nun in Vorbereitung, um einerseits die Ergebnisse aus dem Reagenzglas weiter in Richtung medizinischer Anwendung voranzutreiben und andererseits die Übertragung des Inhibitorprinzips auf andere Proteine zu überprüfen.

Publikation:
Erika Andreetto, Eleni Malideli, Li-Mei Yan, Michael Kracklauer, Karine Farbiarz,Marianna Tatarek-Nossol, Gerhard Rammes, Elke Prade, Tatjana Neumüller, Andrea Caporale, Anna Spanopoulou, Maria Bakou, Bernd Reif, and Aphrodite Kapurniotu: A Hot-Segment-Based Approach for the Design of Cross-Amyloid Interaction Surface Mimics as Inhibitors of Amyloid Self-Assembly, Angewandte Chemie 2015.
DOI: 10.1002/anie.201504973

Kontakt:

Prof. Dr. Aphrodite Kapurniotu
Technische Universität München
Professur für Peptidbiochemie
Tel: 0049-8161-713542
E-Mail: akapurniotu(at)wzw.tum.de

Technische Universität München

Corporate Communications Center Sabine Letz
sabine.letz(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Legt man die zehn Strukturen mit der geringsten Energie übereinander, so zeigt die Überlagerung schön, welche Struktur das hIAPP-Molekül in einer Membranumgebung bevorzugt - eine völlig andere Struktur als das freie Molekül einnehmen würde. (Bild: Diana Rodriguez Camargo /TUM)

Warum verursachen Fehlfaltungen Typ-2-Diabetes?

Verklumpen fehlgefaltete Proteine in insulinproduzierenden Zellen der Bauchspeicheldrüse, können diese absterben. Jetzt ist es Forscherinnen und Forschern der Technischen Universität München (TUM), der Universität Michigan…

Nach Gabe eines Antagomir gegen miR92a werden Insulin (weiß) produzierende Betazellen seltener von Immunzellen (grün) angegriffen. Zudem sind mehr regulatorische T Zellen (rot) vorhanden, die die Betazellen (weiß) schützen können. (Foto: Helmholtz Zentrum München)

Wie kommt‘s zum Friendly Fire in der Bauchspeicheldrüse?

Bei Diabetes vom Typ-1 bekämpft der Körper die eigenen Insulin produzierenden Zellen. Ein Team von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM), vom Helmholtz Zentrum München und…

Insulin wirkt an Stützzellen, um die Aufnahme von Zucker ins Gehirn zu regulieren. Oben ist eine solche intakte Signaltransaktion zu sehen, unten ist sie gestört. (Quelle: Garcia-Caceres)

Schalter für Zuckertransport ins Gehirn entdeckt

Unser Gehirn holt sich Zucker durch einen aktiven Prozess aus dem Blut. Das haben Diabetesforscher an der Technischen Universität (TUM) und am Helmholtz Zentrum in München entdeckt. Bisher lautete die These, dass es sich um…

Farblich markierte Betazellen. Grün: mit Flattop, Rot: Mit Flattop (Foto: Helmholtz Zentrum München)

Zweierlei Betazellen

Betazellen in der Bauchspeicheldrüse gibt es in verschiedenen Varianten. Forscherinnen und Forscher der Technischen Universität München (TUM), des  Helmholtz Zentrums München und des Deutschen Zentrums für Diabetesforschung…

Darstellung von langsamen Wellen im Gehirn, die sich während des Schlafes normal ausbreiten (links). Durch die Amyloid-β-Plaques wird dieser Prozess massiv gestört (Mitte). Diese Störung wird durch die Gabe eines Benzodiazepins behoben (rechts). (Bild: Marc Aurel Busche / TUM)

Alzheimer: Plaques stören Gedächtnisbildung im Schlaf

Alzheimerpatienten leiden häufig unter Schlafstörungen, meist schon bevor sie vergesslich werden. Bekannt ist zudem, dass Schlaf bei der Gedächtnisbildung eine sehr wichtige Rolle spielt. Forscher der Technischen…

Räumliche Struktur des alphaB-Crystallins, eine hexamere Untereinheit ist farblich heraus gehoben – Bild: Andi Mainz / TUM

Neues Einsatzgebiet für vielseitigen Helfer

Bei der Alzheimer Krankheit lagern sich Proteine zu langen Fibrillen zusammen. Dies führt zum Absterben der Nervenzellen. Kleine Hitzeschock-Proteine wirken dem entgegen. Wissenschaftler hoffen daher, sie als Wirkstoffe zur…

Mikroskopischer Einblick ins Alzheimer-Gehirn mit grün fluoreszierenden Nervenzellen in der Nähe der typischen Amyloid-Plaques (in blau dargestellt). (Bild: M. A. Busche / TUM)

Demenz: Forscher entdecken neues giftiges Eiweiß

Bei Alzheimer-Kranken sammeln sich giftige Eiweißklumpen im Gehirn an, die die Nervenzellen schädigen. Als Auslöser für diesen Prozess gelten kleine Eiweißfragmente, die sogenannten Beta-Amyloid-Peptide, die von…

Forschern der LMU, der Technischen Universität München (TUM) und der Helmholtz-Gemeinschaft forschen gemeinsam im neuen Centrum für Schlaganfall- und Demenzforschung (CSD). (Foto: Klinikum der Universität München)

Gemeinsam gegen Alzheimer, Parkinson und Schlaganfall

Das in München neu eröffnete Centrum für Schlaganfall- und Demenzforschung (CSD) ist ein beispielhaftes Modell für die Zusammenarbeit unterschiedlicher Forschungsorganisationen, mit dem Ziel, Ursachen und Risikofaktoren von…

HSTS