TUM – Technische Universität München Menü
Das Foto zeigt, wie wichtig Brassinosteroide für die Entwicklung von Pflanzen sind: Ein Mangel des Pflanzenhormons (rechts) führt zu Wachstumsstörungen, hier bei Gurkenpflanzen.
Das Foto zeigt, wie wichtig Brassinosteroide für die Entwicklung von Pflanzen sind: Ein Mangel des Pflanzenhormons (rechts) führt zu Wachstumsstörungen, hier bei Gurkenpflanzen. (Bild: Wilfried Rozhon / TUM)
  • Forschung

Wissenschaftler entdecken wichtigen Signalweg für die Entwicklung von Pflanzen

Wie Steroidhormone Pflanzen wachsen lassen

Pflanzen können sich außergewöhnlich schnell an Veränderungen in ihrer Umgebung anpassen. Dabei helfen ihnen Botenstoffe, die unmittelbar nach Licht- und Temperaturreizen aktiv werden. Eine Schlüsselstellung nehmen hier pflanzliche Steroidhormone ein, die menschlichen Sexualhormonen ähneln. In der aktuellen Ausgabe von Nature Communications beschreiben Wissenschaftlerinnen und Wissenschaftler einen neuen Wirkmechanismus für die Hormonklasse der Brassinosteroide. 

Pflanzen sind Mensch und Tier in einigem überlegen. Sie haben eine beeindruckende Regenerationsfähigkeit und können ganze Organe neu bilden, zum Beispiel eine Baumkrone nach einem Blitzeinschlag. Einen entscheidenden Nachteil haben Pflanzen allerdings: Sie sind sprichwörtlich in ihrem Lebensraum verwurzelt und daher ungünstigen Umweltbedingungen schutzlos ausgeliefert. Aus diesem Grund haben sie Mechanismen entwickelt, mit denen sie ihr Wachstum und ihre Entwicklung schnell an Veränderungen anpassen können. 

Diese Flexibilität wird vor allem durch Pflanzenhormone gewährleistet. Brassinosteroide spielen dabei eine zentrale Rolle. Sie wirken in kleinsten Konzentrationen, regulieren Zellstreckung und Zellteilung und sind über die gesamte Lebensspanne der Pflanze hinweg aktiv. Einem Team von Forschern der Technischen Universität München (TUM) und der Universität Wien gelang es jetzt, einen neuen Wirkmechanismus aufzuklären. 

Sammelstellen für DNA-bindendes Protein

Sobald Brassinosteroide an einen Rezeptor an der Zellwand binden, startet eine vielstufige Reaktionskaskade, an deren Ende die Aktivierung des Transkriptionsfaktors CESTA (CES) steht. Transkriptionsfaktoren binden an die DNA im Zellkern und aktivieren Gene, die die Proteinzusammensetzung der Zelle verändern. 

Erstmals konnten die Wissenschaftler um Prof. Brigitte Poppenberger vom TUM-Fachbereich für Biotechnologie gartenbaulicher Kulturen zeigen, dass sich das CES-Protein nach Brassinosteroid-Aktivierung an bestimmten Stellen im Zellkern konzentriert. Diese Strukturen sind als so genannte ‚Nuclear Bodies’ im Zellkern zu erkennen. 

Die Wissenschaftler vermuten, dass sich der Transkriptionsfaktor CES an bestimmten Regionen der DNA sammelt, um dort die Genfunktion effektiv zu steuern. „Die Zelle scheint wichtige Ressourcen zu bündeln, um die Produktion bestimmter Proteine schnell anzukurbeln - ähnlich wie auf einer Baustelle, auf der Arbeiter kurzfristig zusammenkommen, um zum Beispiel eine Materiallieferung zu entladen“, sagt Poppenberger. 

Neuer Signalweg gefunden

Die Wissenschaftler entschlüsselten außerdem den Mechanismus, der den CES-Molekülen das Signal zum Sammeln gibt: Die Moleküle haben eine Bindungsstelle für das so genannte SUMO-Protein. Sobald dieses andockt, wandert CES in Nuclear Bodies und wird gleichzeitig vor dem Abbau durch Enzyme geschützt. „Interessanterweise scheint die SUMO-Markierung die CES-Wirkung zu verstärken“, so Poppenberger. „Im Gegensatz zur Tierwelt: Bei Tieren dient das SUMO-Protein dazu, Transkriptionsfaktoren zu hemmen.“

Die Forschungsergebnisse sind ein wichtiger Schritt, um die Wirkungsweise von Brassinosteroiden besser zu verstehen, wie Poppenberger erläutert: „Im Gartenbau und in der Landwirtschaft werden andere Arten von wachstumsfördernden Hormonen seit mehreren Jahrzehnten erfolgreich eingesetzt, um Erträge zu erhöhen. Das Potenzial der Brassinosteroide ist bisher noch nicht erschlossen. Ein besseres Verständnis ihrer Wirkungsweise wird helfen, sie für die Pflanzenproduktion nutzbar zu machen. Das ist das Ziel unserer Arbeit.“

Publikation:
Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signaling; Mamoona Khan, Wilfried Rozhon, Simon Josef Unterholzner, Tingting Chen, Marina Eremina, Bernhard Wurzinger, Andreas Bachmair, Markus Teige, Tobias Sieberer, Erika Isono, and Brigitte Poppenberger, Nature Communications; DOI: 10.1038/ncomms5687

Bilder zum Download

Kontakt: 
Prof. Dr. Brigitte Poppenberger
Technische Universität München
Fachgebiet Biotechnologie gartenbaulicher Kulturen
Tel.: +49 8161 71-2401
brigitte.poppenberger(at)tum.de
http://bgk.wzw.tum.de 

Corporate Communications Center

Technische Universität München Barbara Wankerl
barbara.wankerl(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Sind die Pflanzen nicht gegen Spätfrost gewappnet, kann dieser die Ernte zerstören. (Foto: VolkovaIrina / iStock)

Steroidhormone – Doping für Pflanzen

In den vergangenen Jahren sind die Winter in Deutschland immer wärmer geworden und Spätfrost ist keine Seltenheit mehr. Molekularbiologin Prof. Brigitte Poppenberger und ihr Team haben herausgefunden, dass sich manche...

Eine frühe Blüte in Verbindung mit Spätfrösten kann die Apfel- oder Pflaumenernte erheblich reduzieren. (Screenshot)

So wappnen Wachstumshormone Pflanzen vor Kälte

Der Klimawandel bringt Bäume dazu, dass sie immer früher blühen. Kommt es jedoch im Frühjahr zu Spätfrösten wie in den vergangenen Wochen, kann dies zu starken Ausfällen bei der Obsternte führen. Um besser zu verstehen, wie...

Für viele Pflanzenarten, wie die in der Forschung beliebte Ackerschmalwand, aber auch für Nutzpflanzen wie Mais, Reis und Weizen gibt es Initiativen, welche die Genomsequenz vieler Unterarten und Sorten erfassen. (Foto: Regnault/ TUM)

Mit Pflanzendimmer den Klimawandel austricksen?

Pflanzen besitzen Mechanismen, die verhindern, dass sie im Winter blühen. Ist die Winterkälte vorbei, sind diese inaktiviert. Doch auch wenn es im Frühling zu kühl ist, passen Pflanzen ihr Blühen an. Wissenschaftler der...

In der Landwirtschaft und im Gartenbau wird Frühfrost (früh im Jahr; noch in der Vegetationsperiode) gefürchtet, weil er – genau wie Spätfrost – zu Ernteausfällen führen kann. Bei Frühfrostgefahr wird frostberegnet etwa bei Apfelbäumen. (Foto: mit Genehmigung v. D. Mitterer-Zublasing)

Mit Hormonen Frost und Kälte trotzen

Pflanzen können sich nicht einfach ein geeigneteres Umfeld suchen, wenn ihnen die Standortbedingungen nicht mehr passen. Stattdessen haben sie ausgeklügelte molekulare Anpassungsmechanismen entwickelt. Wie Wissenschaftler...

Die Forscher haben den Mechanismus gefunden, der bei der schottischen Ackerschmalwand eine um zwei Wochen frühere Blüte auslöst als bei ihren Verwandten in wärmeren Regionen. (Foto: U. Lutz/ TUM)

Blütezeit von Pflanzen wird vorhersagbar

Pflanzen passen ihre Blütezeit der Temperatur ihrer Umgebung an. Doch was genau löst ihre Blüte auf molekularer Ebene aus? Kann dieser Faktor das Blühen an- oder ausknipsen und damit auf ein verändertes Klima reagieren? In...

Wuchsdefekte der Modellpflanze Ackerschmalwand (Arabidopsis thaliana), die durch fehlende Steroidhormonwirkung ausgelöst werden (linke Seite), konnten durch Wiederherstellen der Gibberellinproduktion behoben werden (rechte Seite). (Foto: Brigitte Poppenberger / TUM)

Pflanzenwachstum: Teamwork zweier Hormone nötig

Es gibt zwei wachstumsfördernde Stoffgruppen in Pflanzen, die unabhängig voneinander bei Kulturpflanzen eingesetzt werden: Die Phytohormone Gibberelline und die Brassinosteroide. Nun haben Wissenschaftler der Technischen...

Pilzbefall auf einem Blatt der Modellpflanze Acker-Schmalwand.

Gute Netzwerker sind beliebte Angriffsziele

Proteine erfüllen ihre Aufgaben nicht alleine, sondern vernetzen sich zu kleinen oder größeren Teams. Wie diese Proteinnetzwerke von Krankheitserregern manipuliert werden, hat ein Forscherteam an einem Pflanzenmodell...

Pflanzen wachsen zum Licht – verantwortlich dafür ist das Pflanzenhormon Auxin.

Wie wachsen Pflanzen zum Licht?

Pflanzen haben mehrere Strategien entwickelt, um mit ihren Blättern möglichst viel Sonnenlicht einzufangen. Wie sich auch bei Topfpflanzen am Wohnzimmerfenster beobachten lässt, wachsen Pflanzen immer in Richtung des...