TUM – Technische Universität München Menü
Ein Ganglion im menschlichen Darm, in dem Nervenaktivität über ein bildgebendes Verfahren nach Gabe des Anti-HuD-Serums registriert wurde. Die Nervenaktivität ist rot: Zu sehen sind aktive Nervenzellen. Die schwarzen Pfeile markieren einige der aktivierten Nervenzellen. Das Inlet (rote Kurve) zeigt die Antwort einer Nervenzelle nach Gabe des Serums (schwarzer Balken unter der Kurve). Der Anti-HuD-Antikörper löst eine Aktionspotentialentladung (Kurvenausschläge nach oben) aus. (Abb.: Schemann, Michel/ TUM)
Ein Ganglion im menschlichen Darm, in dem Nervenaktivität über ein bildgebendes Verfahren nach Gabe des Anti-HuD-Serums registriert wurde. Die Nervenaktivität ist rot: Zu sehen sind aktive Nervenzellen. Die schwarzen Pfeile markieren einige der aktivierten Nervenzellen. Das Inlet (rote Kurve) zeigt die Antwort einer Nervenzelle nach Gabe des Serums (schwarzer Balken unter der Kurve). Der Anti-HuD-Antikörper löst eine Aktionspotentialentladung (Kurvenausschläge nach oben) aus. (Abb.: Schemann, Michel/ TUM)
  • Forschung

Paradigmenwechsel: Antikörper können Nerven aktivieren

Antikörper als „Botenstoffe“ im Nervensystem

Dass Antikörper in Millisekunden menschliche Nervenzellen aktivieren und damit ihre Funktion ändern können, ist das überraschende Ergebnis einer vom Lehrstuhl für Humanbiologie der Technischen Universität München (TUM) durchgeführten Studie. Dieses Wissen verbessert das Verständnis der Begleiterkrankungen bestimmter Formen von Krebs – allen voran der sehr problematischen Darmlähmung.

Funktionelle Störungen von Organen, die im Zusammenhang mit einer Tumorerkrankung auftreten, werden Paraneoplastische Syndrome genannt. Diese verursacht nicht der Primärtumor selbst, sondern sie sind häufig eine Folge einer Autoimmunreaktion des Körpers. Dabei richten sich Antikörper im Menschen gegen die eigenen Zellen und greifen diese an.

Eine dieser Funktionsstörungen ist eine Lähmung des Darms (Darmatonie). Sie erschwert es, Patienten über die Nahrung mit notwendigen Nährstoffen und Kalorien zu versorgen. Das sogenannte Anti-Hu-Syndrom, als eine Form des Paraneoplastischen Syndroms, ist häufig mit einer Darmlähmung assoziiert und kommt in der Regel im Zusammenhang mit dem kleinzelligen Lungentumor vor. Paraneoplastische Syndrome treten häufig auf noch bevor der Tumor überhaupt entdeckt wurde.

Hu ist ein Protein. In verschiedenen Versionen kommt es normalerweise in den Zellkernen aller Nervenzellen vor – gemeint sind HuA, B, C und D. Da der Tumor das Hu-Protein bildet, generiert das Immunsystem dagegen Antikörper. Diese dienen zunächst der Tumorabwehr: Je mehr Antikörper gebildet werden, desto langsamer wächst der Tumor. Diese Anti-Hu-Antikörper – benannt 1985 nach dem ersten Patienten, in dem diese Antikörper entdeckt wurden – führen aber auch zu einer Autoimmunreaktion mit einer Darmlähmung als Begleiterkrankung.

Nerven werden aktiviert bevor sie beschädigt werden können

Professor Michael Schemann und seine Mitarbeiter vom Lehrstuhl für Humanbiologie der TU München wollten Ursachen für mögliche Nervenfunktionsstörungen identifizieren wie sie bei Paraneoplastischen Syndromen und Darmlähmung auftreten. Dafür untersuchten sie Seren von Patienten mit kleinzelligem Lungentumor von der Mayo Klinik in Rochester (USA). In einer über zehn Jahre durchgeführten Studie – nun veröffentlicht in Scientific Reports – konnten die Forscher erstmals zeigen, dass diese Patientenseren innerhalb von Millisekunden menschliche Nervenzellen aktivieren, ohne dass sie geschädigt werden. Dies verändert Nervenfunktionen weit bevor die Autoimmunreaktion die Nerven schädigt.

In Zusammenarbeit mit der Firma Euroimmun aus Lübeck konnte das Team sogar den dafür verantwortlichen Faktor identifizieren: Normalerweise werden Nervenzellen über Botenstoffe aktiviert oder gehemmt, die auf spezifische Signalauslöser (Rezeptoren) in der Zellmembran wirken. Erstaunlicherweise war es bei den Patientenseren indes ein Antikörper, nämlich der Anti-HuD-Antikörper, welcher die Nervenzellen erregte.

Antikörper ahmt Botenstoffe Acetylcholin und Adenosintriphosphate nach

Das Besondere an diesem Befund war die Tatsache, dass der Antikörper nicht über die Bindung an sein eigentliches Hu-Zielprotein wirkt. „Interessanterweise wird die nervenaktivierende Wirkung über Rezeptoren für Neurotransmitter vermittelt“, sagt Professor Schemann, „es sind dies Rezeptoren, die üblicherweise durch Acetylcholin und Adenosintriphophat aktiviert werden." Der Antikörper ahmt quasi die Wirkung der Botenstoffe Acetylcholin und Adenosintriphosphat nach.

Das HuD-Protein stabilisiert normalerweise die Ribonukleinsäure (RNA) und hat mit Nervenaktivierung nichts zu tun. Es bleibe zwar nach wie vor noch eine Blackbox, wie und wo exakt der Anti-HuD-Antikörper an die Rezeptoren bindet. Jedoch läute die nun entdeckte Wirkung des Anti-HuD-Antikörpers einen Paradigmenwechsel laut Professor Schemann ein, weil Antikörper Nerven aktivieren können unabhängig von Antikörper spezifischen Bindungsstrukturen auf der Zellmembran.

„Was wir gefunden haben", erklärt Professor Schemann, "wird zwar nicht den Lungenkrebs selbst heilen, aber es führt zu einem neuen klinischen Verständnis und somit hoffentlich zu neuen Therapieansätzen der damit zusammenhängenden Paraneoplastischen Syndrome wie etwa der chronischen Darmlähmung.“

Die Gruppe am Lehrstuhl für Humanbiologie hat erst kürzlich als Kooperationspartner der Charité in Berlin gezeigt, dass Antikörper menschliche Nerven aktivieren können*. Hierbei war aber das Wirkprinzip offensichtlich, da die Bindung des Antikörpers an definierte Strukturen eines Kaliumkanals die Erregbarkeit der Nerven veränderte.

Publikationen:

Qin Li*, Klaus Michel*, Anita Annahazi, Ihsan E. Demir, Güralp O. Ceyhan, Florian Zeller, Lars Komorowski, Winfried Stöcker, Michael J. Beyak, David Grundy, Gianrico Farrugia, Roberto De Giorgio und Michael Schemann: Anti-Hu antibodies activate enteric and sensory neurons, Scientific Reports 12/2016. (* gleichrangige Erstautoren)
DOI: 10.1038/srep38216

*Piepgras J, Höltje M, Michel K, Li Q, Otto C, Drenckhahn C, Probst C, Schemann M, Jarius S, Stöcker W, Balint B, Meinck HM, Buchert R, Dalmau J, Ahnert-Hilger G, Ruprecht K. Neurology. 2015 Sep 8;85(10):890-7.
DOI: 10.1212/WNL.0000000000001907

Kontakt:

Prof. Dr. Michael Schemann
Technische Universität München
Lehrstuhl für Humanbiologie
Tel: +49/8161/71 5403
E-Mail: schemann(at)wzw.tum.de

Corporate Communications Center

Technische Universität München Sabine Letz
letz(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Nicht der Zellstress allein führt zum Tumorwachstum, sondern die Zusammenarbeit von Stress und Mikrobiota, fand Prof. Dirk Haller mit seinem Team heraus – hier bei der Analyse von Gewebeschnitten mit den Wissenschaftlerinnen Sandra Bierwirth (li.) und Olivia Coleman. (Bild: A. Heddergott/ TUM)

Mikrobiota im Darm befeuert Tumorwachstum

Auf ein unerwartetes Ergebnis ist das Team von Professor Dirk Haller an der Technischen Universität München (TUM) bei der Untersuchung von auslösenden Faktoren des Dickdarmkrebses gestoßen: Zellstress treibt in Kombination...

Mithilfe der Proteomanalyse konnten 204 Proteine identifiziert werden, deren Konzentration in den Reizdarm-Überständen anders aussahen als in den Biopsien der anderen Probanden. (Bild: PLOS)

Biomarker für den Reizdarm

Nach wie vor ist zu wenig bekannt über die genauen Ursachen des Reizdarm-Syndroms. Ein internationales Team unter maßgeblicher Beteiligung der Technischen Universität München (TUM) liefert erste Hinweise auf die organischen...

Der Dickdarm – hier dunkel hervorgehoben – ist ein wichtiger Teil des Verdauungstrakts: Ist seine Nervenversorgung gestört, verursacht das beispielsweise chronische Verstopfung, das Reizdarm-Syndrom und entzündliche Darmerkrankungen. (Bild: Pixabay / Elionas2)

7,5 Millionen US-Dollar für Erforschung des Dickdarms

Prof. Michael Schemann vom Lehrstuhl für Humanbiologie der Technischen Universität München (TUM) ist Teil eines Konsortiums, das in den nächsten drei Jahren die Rolle von Nerven für normale und krankhaft veränderte...

Die Behandlung einer Lebererkrankung im Endstadium ist die Lebertransplantation. Doch die Anzahl gespendeter Lebern ist begrenzt. Ein Hauptziel der regenerativen Medizin ist es deshalb, menschliche Gewebe herzustellen, die funktionierende dreidimensionale Leberdivertikel herausbilden. (Foto: Fotolia/Yodiyim)

Labor-Lebern ahmen natürliche Entwicklungsabläufe nach

Wie arbeiten Zellen zusammen und setzen ihr Genom ein, um sich in menschliches Lebergewebe zu entwickeln? Dieser Frage ging ein internationales Forscherteam vom Max-Planck-Institut unter Leitung von Prof. Barbara Treutlein...

Dagmar Krüger vom Lehrstuhl für Humanbiologie der TUM hat über einen Zeitraum von acht Jahren mehr als 2200 Proben von rund 450 Patienten mit Darmerkrankungen untersucht. (Foto: TUM/ A. Eckert)

Der Darm: Leistungsfähig bis ins hohe Alter

Es ist ein Durchbruch in der Grundlagenforschung und die erste umfangreiche Studie über die Sekretionsaktivität des Humandarms. Dr. Dagmar Krüger vom Lehrstuhl für Humanbiologie der TU München hat über einen Zeitraum von...

Ein Darm eines Patienten von innen, der an Morbus Crohn erkrankt ist. (Foto: Fotolia/ Juan Gärtner)

Fragile Bakteriengemeinschaft im Darm

Patienten mit chronisch-entzündlichen Darmerkrankungen leiden sehr häufig unter Eisenmangel. Eine internationale und interdisziplinäre Wissenschaftlergruppe unter Federführung des ZIEL – Institute for Food & Health der...

Das Reizdarmsyndrom geht mit typischen Symptomen wie Bauchweh oder Krämpfen einher. Lange war gemutmaßt worden, dass es eine psychosomatische Störung ist. (Foto: iStock/SomkiatFakmee)

Reizloser Reizdarm

Erstmals wurde an Biopsien von Reizdarmpatienten nachgewiesen, dass die Nerven ihrer Darmwand stark reduziert auf einen Entzündungscocktail reagieren. Dies widerlegt die bisherige These, Reizdarmpatienten hätten einen...

Viertelmillimeter große Organoide haben essentielle Funktionen eines echten Darms. (Foto: TUM/ Zietek)

Mini-Darm aus dem Reagenzglas

Dass in der Petrischale aus Stammzellen kleine, dreidimensionale Vorläufer eines Organes entstehen können, hat eine Revolution in der Biomedizin ausgelöst. Doch was kann an einem solchen Organoid in vitro erforscht werden?...