TUM – Technische Universität München Menü
Elektrisch schaltbares organisches Molekül. (Bild: Yuxiang Gong / TUM / Journal of the American Chemical Society)
Elektrisch schaltbares organisches Molekül. (Bild: Yuxiang Gong / TUM / Journal of the American Chemical Society)
  • Forschung

Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Schalten mit Molekülen

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen einer internationalen Kooperation nun gelungen, ein einzelnes Molekül als Schaltelement für Lichtsignale einzusetzen.

„Das Schalten mit nur einem Molekül bringt die zukünftige Elektronik einen Schritt näher an das absolute Limit der Miniaturisierung“, sagt der Nanowissenschaftler Joachim Reichert vom Physik-Department der TU München.

Veränderte Struktur – veränderte optische Eigenschaften

Das Team entwickelte zunächst ein Verfahren, das es erlaubt, Moleküle in starken optischen Feldern gezielt elektrisch zu kontaktieren und mit Hilfe einer angelegten Spannung anzusteuern. Bei einer Spannung von etwa einem Volt verändert das Molekül seine Struktur, es wird flach, leitend und streut Licht.

Dieses je nach Struktur unterschiedliche optische Verhalten des Moleküls ist für die Forscher spannend. Denn die Streuaktivität – physikalisch wird hier die Ramanstreuung ausgenutzt – lässt sich beobachten und gleichzeitig mit Hilfe der anliegenden Spannung an- und abschalten.

Herausfordernde Technik

Die Forscher verwendeten für ihren Schalter eigens von einem Team aus Basel und Karlsruhe synthetisierte Moleküle, die gezielt ihre Struktur ändern, wenn man sie auflädt. Die auf einer Metalloberfläche angeordneten Moleküle werden mit einer sehr dünn mit Metall beschichteten Spitze eines Glasfragments kontaktiert.

Dieses dient gleichzeitig als elektrischer Kontakt, Lichtquelle und Lichtkollektor. Darüber leiten die Forscher Laserlicht zum Molekül und messen in Abhängigkeit der angelegten Spannung winzige spektroskopische Signale.

Einzelne Moleküle elektrisch zu kontaktieren, ist technisch extrem herausfordernd. Die Wissenschaftler konnten dieses Verfahren nun erfolgreich mit der Einzelmolekülspektroskopie kombinieren. So lassen sich kleinste Strukturveränderungen in Molekülen überaus präzise beobachten.

Konkurrenz für Silizium

Ein Ziel der molekularen Elektronik ist es, neuartige Bauelemente zu entwickeln, um herkömmliche, auf Silizium basierte Vorrichtungen durch integrierte und direkt ansteuerbare Moleküle zu ersetzen.

Aufgrund seiner winzigen Dimensionen eignet sich dieses Nanosystem für Anwendungen in der Optoelektronik, bei denen Licht mit elektrischen Spannungen geschaltet werden soll.

Publikation:

Hai Bi, Carlos-Andres Palma, Yuxiang Gong, Peter Hasch, Mark Elbing, Marcel Mayor, Joachim Reichert und Johannes V. Barth,
Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction: J. Am. Chem. Soc.  140, 14, 4835-4840

Mehr Informationen:

Das Forschungsprojekt wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft über den Exzellenzcluster Munich-Centre for Advanced Photonics (MAP) und das Schwerpunktprogramm SPP 1243 sowie durch EU-Förderungen (ERC Advanced Grant MolArt und FET Maßnahme 2D-Ink) und dem China Scholarship Council (CSC).

Kontakt:

Dr. Joachim Reichert / Prof. Dr. Johannes Barth
Technische Universität München
Oberflächen- und Grenzflächenphysik (E20)
Tel.: +49 89 289 12608
e20office(at)ph.tum.de

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Das neue Verfahren bildet aus einfachen organischen Molekülen eine komplexe, halbreguläre 3.4.6.4 Parkettierung. (Bild: Klappenberger und Zhang / TUM)

Komplexe Parkettmuster, außergewöhnliche Materialien

Ein internationales Forscherteam unter Führung der Technischen Universität München (TUM) hat einen Reaktionsweg entdeckt, der exotische Schichten mit halbregulärer Struktur erzeugt. Solche Materialien sind interessant, weil...

Rastertunnelmikroskopische Aufnahme des quasikristallinen Netzwerks - Bild: J. I. Urgel / TUM

Kleine Kunstwerke mit großem Potential

Anders als klassische Kristalle besitzen Quasikristalle zwar ein übergeordnetes Muster, bestehen jedoch nicht aus periodischen Einheiten. Sie bilden so faszinierende Mosaike, deren Entstehung kaum verstanden ist. Forscher...

Rastertunnelmikroskopisches Bild des Netzwerks aus mit Melamin verknüpften Terrylendiimidmolekülen; rechts eingeblendet: Modell der atomaren Struktur – Bild: C. A. Palma / TUM

Strom gewinnen mit molekularen Architekturen

Organische Photovoltaik wird von vielen als Einstieg in eine kostengünstigere Stromerzeugung angesehen. Eine der noch zu lösenden Herausforderungen ist die geringe Ordnung der dünnen Schichten auf den Elektroden. Einen...

Illustration eines Photosystem I-Komplexes, der über die Spitze eines optischen Nahfeld-Mikroskops beleuchtet wird

Solarzelle aus einem Molekül

Mittels Photosynthese wandeln Pflanzen Licht in chemische Energie um. Diesen Prozess für die Energieerzeugung nutzbar zu machen, daran wird weltweit geforscht. Einem Wissenschaftlerteam der Technischen Universität München...