TUM – Technische Universität München Menü
Das IceCube Lab am Südpol unter den Sternen.
Das IceCube Lab am Südpol unter den Sternen. (Foto: Martin Wolf, IceCube/NSF; Video: TUM)
  • Forschung

Blazar beschleunigt kosmische Neutrinos auf höchste Energien

Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Ein Team um die Physikerin Prof. Elisa Resconi von der Technischen Universität München (TUM) liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchten Wissenschaftlerinnen und Wissenschaftler um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und Blazar-Experten Paolo Padovani von der Europäischen Südsternwarte (ESO) eine 1,33 Grad große Himmelsregion um die Position, aus deren Richtung am 22. September 2017 ein hochenergetisches Neutrino in den IceCube-Detektor eingeschlagen war.

Als Quelle dieses Neutrinos hatte eine internationale Kooperation, an der auch Resconi beteiligt ist, einen Blazar mit der Katalognummer TXS 0506+056 ausgemacht, das ist eine aktive Galaxie, deren Jet hochenergetischer Teilchen direkt in Richtung Erde zeigt. „Es ist eines der hellsten und eigentümlichsten Objekte, das jemals beobachtet wurde“, sagt Elisa Resconi.

Viele Konkurrenzobjekte im „Open Universe“

Die Forschergruppe um Resconi und Padovani nutzte für ihre Arbeit erstmals die frei zugänglichen Archiv-Daten von „Open Universe“, einer Initiative unter der Schirmherrschaft des Büros der Vereinten Nationen für Weltraumfragen, die von Paolo Giommi, Hans-Fischer-Senior-Fellow am TUM Institute for Advanced Study, ins Leben gerufen wurde.

Mit einer speziell hierfür entwickelten Software durchkämmten sie die Daten von zahlreichen Teleskopen und charakterisierten die Signale. Tatsächlich fanden sie zunächst 637 Objekte, darunter auch sieben Blazar-artige, von denen das IceCube-Neutrino stammen könnte. Anschließend nahmen sie diese genauer unter die Lupe.

TUM-Team liefert entscheidenden Beitrag

Nach sorgfältiger Analyse blieb nur noch ein Konkurrenz-Blazar übrig. Dieser war dem Team insbesondere für den Zeitraum von September 2014 bis März 2015 als starke Quelle hochenergetischer Gamma-Strahlung aufgefallen. In dieser Zeit hatte IceCube weitere Neutrinos aus Richtung TXS 0506+056 detektiert, wie eine nachträgliche Untersuchung aller bisherigen IceCube-Neutrinos seit 2008 offenbart hatte.

„Wir konnten aber schließlich zeigen, dass das Strahlungsprofil von TXS 0506+056 perfekt zu den Energien der Neutrinos passt, so dass wir alle anderen Quellen und insbesondere den Hauptkonkurrenten ausschließen konnten“, sagt Paolo Padovani.

Neutrinos sind einzigartige kosmische Boten

Resconi, Padovani und Giommi waren im Jahr 2017 die ersten Wissenschaftler, die eine Beziehung zwischen hochenergetischen IceCube-Neutrinos und Blazaren herzustellen versuchten. „Nun können wir einen entscheidenden Beitrag zum Nachweis liefern, dass Blazare die Quellen kosmischer Neutrinos sind“, sagt Elisa Resconi.

Das Ende einer mehr als hundert Jahre dauernden Suche nach den Herkunftsorten hochenergetischer kosmischer Teilchen markiert für Elisa Resconi gleichzeitig einen neuen Anfang: „In Zukunft wissen wir nun besser, wonach wir suchen müssen“. Neutrinos sind dabei die einzigen kosmischen Boten, mit denen die höchstenergetischen Phänomene im Universum untersucht werden können.

Die aufwändige Suche nach den flüchtigen Teilchen

Neutrinos sind jedoch extrem flüchtige Teilchen. Da sie kaum mit anderer Materie wechselwirken, passieren sie praktisch jede Art von Materie ungehindert. Der IceCube-Detektor im Südpol-Eis ist daher mit einem Volumen von einem Kubikkilometer zwar der größte Detektor weltweit, aber immer noch zu klein: Seit 2013 sind bisher nur 82 höchstenergetische Neutrinos in das IceCube-Eis eingeschlagen.

Daher arbeitet Elisa Resconi am Design eines über die Erde verteilten Netzwerks an Neutrino-Teleskopen. Das Ziel: Die Zahl der detektierten Neutrinos so zu erhöhen, dass Wissenschaftler mit ihnen echte Astronomie betreiben können – und in Kombination mit den anderen astronomischen Informationsquellen, elektromagnetischen Wellen und Gravitationswellen, viele bislang noch unverstandene Phänomene des Universums zu erforschen.

Neues Neutrino-Projekt der TUM im Pazifik

Ende Juni hat Resconis TUM-Team außerdem ein ganz neues Projekt erfolgreich auf den Weg gebracht: Im nordöstlichen Pazifik wurden gerade zwei 150 Meter lange Drahtseile mit insgesamt acht Detektoren in 2700 Meter Tiefe auf dem Meeresgrund befestigt.

„Sollte der Standort geeignet sein, könnte man dank der vorhandenen Infrastruktur darüber nachdenken, wie dort in relativ kurzer Zeit ein komplettes Neutrino-Teleskop installiert werden könnte“, sagt Elisa Resconi. „Ein Neutrino-Teleskop im Pazifik würde IceCube und die nächste Generation von IceCube am Südpol perfekt ergänzen.“

Publikationen:

  • IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, HESS, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA: Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, 12 July 2018, DOI: 10.1126/science.aat1378
    Link zur Publikation (Zugriff möglich ab 12. Juli 2018, 17 Uhr MESZ)
  • IceCube Collaboration: Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 12 July 2018, DOI: 10.1126/science.aat2890
    Link zur Publikation (Zugriff möglich nach Ablauf der Sperrfrist)
  • P. Padovani, P. Giommi, E. Resconi et al.: „Dissecting the region around IceCube-170922A: BL Lac TXS 0506+056 as the first cosmic neutrino source“, Monthly Notices of the Royal Astronomical Society, 12 July 2018, DOI: 10.1093/mnras/sty1852
    Link zur Publikation (Zugriff möglich nach Ablauf der Sperrfrist)
  • E. Resconi, S. Coenders, P. Padovani, P. Giommi, L. Caccianiga: “Connecting blazars with ultra-high energy cosmic rays and astrophysical neutrinos”, Monthly Notices of the Royal Astronomical Society, 28 February 2017, DOI: 10.1093/mnras/stx498
    Link zur Publikation

mehr Informationen:

Das Neutrino-Teleskop IceCube wird im Wesentlichen von der National Science Foundation (NSF), USA, finanziert. Betrieben wird es unter der Federführung der University of Wisconsin-Madison.

Zum Bau von IceCube trugen daneben folgende Institutionen bei: der Nationalfonds für wissenschaftliche Forschung (FNRS & FWO), Belgien; das Bundesministerium für Bildung und Forschung (BMBF) und die Deutsche Forschungsgemeinschaft (DFG), Deutschland; die Knut-und-Alice-Wallenberg-Stiftung, das Schwedische Polarforschungssekretariat und der Schwedische Forschungsrat, Schweden; das Department of Energy und der Forschungsfonds der University of Wisconsin-Madison, USA.

Im Rahmen der IceCube-Kollaboration arbeiten rund 300 Wissenschaftler aus 49 Institutionen in 12 Ländern zusammen. In Deutschland sind beteiligt: RWTH Aachen, Humboldt-Universität zu Berlin, Ruhr-Universität Bochum, TU Dortmund, Universität Erlangen-Nürnberg, Universität Mainz, Universität Münster, Technische Universität München und Universität Wuppertal. Das Forschungsprogramm von IceCube wird in Deutschland finanziert vom BMBF, der Helmholtz Gesellschaft, der DFG sowie mit weiteren Mitteln der beteiligten Institutionen.

Die interdisziplinäre Zusammenarbeit der Forschungsgruppe zwischen Elisa Resconi (TUM) und Paolo Padovani (ESO) wurde initiiert durch den Exzellenzcluster „Ursprung und Struktur des Universums“ (EXC153), finanziert von der DFG.

Das Projekt von Elisa Resconi im nordöstlichen Pazifik wurde durchgeführt in Zusammenarbeit mit Ocean Networks Canada, einer Initiative der University of Victoria, Kanada, und finanziert von der DFG über den Exzellenzcluster Universe und den Sonderforschungsbereich 1258 „Neutrinos und Dunkle Materie in Astro- und Teilchenphysik“, deren Initiatorin und Sprecherin Elisa Resconi ist.

weiterführende Links:

Link zum YouTube Video

Kontakt:

Prof. Dr. Elisa Resconi
Technische Universität München
Professur für Experimentalphysik mit kosmischen Teilchen
Sonderforschungsbereich 1258
E-Mail: elisa.resconi@tum.de
Tel.: +49 89 289 12422

Dr. Paolo Padovani
Europäische Südsternwarte
E-Mail: ppadovan@eso.org
Tel.: +49 89 32006478

Dr. Paolo Giommi
Hans Fischer Senior Fellow
Technische Universität München
Institute for Advanced Study (IAS)
E-Mail: paolo.giommi@ssdc.asi.it

Corporate Communications Center

Technische Universität München

Weitere Artikel zum Thema auf www.tum.de:

Ein Blick ins Innere des KATRIN-Experiments.

Genauer als gedacht

Trotz ihrer extrem kleinen Masse spielen Neutrinos eine Schlüsselrolle in Kosmologie und Teilchenphysik. Nach Auswertung der ersten Messergebnisse im Karlsruher-Tritium-Neutrino-Experiment KATRIN steht nun fest: Die bisher...

Ein Wissenschaftler bei der Arbeit an den Germanium-Detektoren im Reinraum des unterirdischen Labors von Gran Sasso.

Ganz nah dran an den „Geisterteilchen“

Um die Vermutung zu belegen, dass Materie ohne Antimaterie erzeugt werden kann, sucht das GERDA-Experiment im Gran Sasso Untergrundlabor nach dem neutrinolosen doppelten Betazerfall. Es hat die weltweit höchste...

Illustration von zwei fusionierenden Neutronensternen. Aus der Kollision breiten sich Gravitationswellen aus, wenige Sekunden später ereignet sich ein Ausbruch von Gammastrahlen. Von den zusammenwachsenden Sternen werden wirbelnde Materialwolken ausgestoßen.

800 Milliarden Grad in der kosmischen Küche

Sie gehören zu den spektakulärsten Ereignissen im Universum: Kollisionen von Neutronensternen. Einem internationalen Forschungsteam mit maßgeblicher Beteiligung der Technischen Universität München (TUM) ist es erstmals...

Die Kohnen-Station ist eine Containersiedlung in der Antarktis, aus deren Nähe die Schneeproben stammen, in denen Eisen-60 gefunden wurde.

Sternenstaub im antarktischen Schnee

Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60. Nur eine sehr geringe Menge davon gelangt von fernen Sternen auf die Erde. Jetzt hat ein Forschungsteam unter der Leitung von Physikern der Technischen...

Prof. Elisa Resconi mit einem der im IceCube-Observatorium eingesetzten Photo-Detektoren. (Bild: Magdalena Jooß / TUM)

Liesel Beckmann-Professur für Elisa Resconi

Die Technische Universität München (TUM) hat der Neutrinophysikerin Prof. Elisa Resconi eine Liesel Beckmann-Professur verliehen. Die nach ihrer ersten Professorin benannte Auszeichnung hat die TUM 2012 eingerichtet. Sie...

444 illuminierte Lautsprecher verwandeln aktuelle Forschung in ein begehbares Kunstwerk. (Bild: T. O. Roth / imachination projects)

Geisterteilchen als faszinierende Lichter und Klänge

Ein faszinierendes Kunsterlebnis bietet die Technische Universität München (TUM) am Wochenende des 9. und 10. Februar 2019 in der „Reaktorhalle“ der Musikhochschule in der Luisenstraße 37a. Die Licht- und Klang-Installation...

Der Helixnebel, 700 Lichtjahre von der Erde entfernt. Der Cluster ORIGINS erforscht die Entstehung des Universums und des ersten Lebens. (Bild: ESO/VISTA/J. Emerson)

TUM mit vier Exzellenzforschungsclustern erfolgreich

Abermals startet die Technische Universität München (TUM) erfolgreich in die hochwettbewerbliche Exzellenzinitiative des Bundes und der Länder. Vier Forschungscluster der TUM und ihrer Kooperationspartner werden in den...

Künstlerische Umsetzung der Kollision zweier Neutronensterne.

Durchbruch für eine Multi-Messenger Astronomie

Zum ersten Mal ist es gelungen, Signale von elektromagnetischen und Gravitationswellen aus der Kollision zweier Neutronensterne zu messen. Physiker des von der Technischen Universität München (TUM) geführten...

Neutrino-Ereignisse gemessen mit dem IceCube-Observatorium am Südpol - Bild: IceCube Konsortium

Neuer Sonderforschungsbereich an der TUM

Neutrinos und Dunkle Materie stehen im Mittelpunkt der Forschung eines neuen Sonderforschungsbereichs (SFB) der Deutschen Forschungsgemeinschaft (DFG). Sprecherin des SFBs ist Elisa Resconi, Professorin für...

Simulation der Kollision von Blei-Ionen bei ALICE.

Die Symmetrie des Universums

Warum verschwand die Antimaterie fast vollständig aus unserem Universum, die Materie aber nicht? Am Teilchenbeschleuniger der Großforschungseinrichtung CERN versuchen Wissenschaftlerinnen und Wissenschaftler dieses...

Blick in den magnetisch abgeschirmten Messraum, Prof. Peter Fierlinger (l) und Mitautor Michael Sturm - Foto: Astrid Eckert / TUM

Das kleinste Magnetfeld im Sonnensystem

Magnetfelder durchdringen Materie problemlos. Einen Raum zu schaffen, in dem es praktisch keine magnetischen Felder mehr gibt, ist daher eine große Herausforderung. Ein internationales Team von Physikern hat nun eine...

IceCube-Observatorium in der Antarktis - Foto: Emanuel Jacobi/NSF

Rasende Teilchen aus dem All

Zum ersten Mal gibt es konkrete Hinweise auf hochenergetische Neutrinos, die von außerhalb unseres Sonnensystems stammen. Das IceCube-Experiment, ein riesiges Neutrino-Observatorium in der Antarktis, an dem die Technische...

Neutrino-Forschungsstation IceCube

Zweifel an Gammablitzen als Motor für kosmische Strahlung

Pausenlos wird unsere Erde von hochenergetischen Teilchen, der sogenannten kosmischen Strahlung, bombardiert. Sie besteht vor allem aus Protonen, Neutronen, Elektronen und Myonen, aber auch aus schweren Atomkernen. Obwohl...