TUM – Technische Universität München Menü
Die Wissenschaftler untersuchten die Immunmechanismen gegen Lipopolysaccharid an der Modellpflanze Arabidopsis thaliana (Ackerschmalwand). (Foto: Stefanie Ranf / TUM)
Die Wissenschaftler untersuchten die Immunmechanismen gegen Lipopolysaccharid an der Modellpflanze Arabidopsis thaliana (Ackerschmalwand). (Foto: Stefanie Ranf / TUM)
  • Forschung

Wichtiger Mechanismus im Immunsystem von Pflanzen entschlüsselt

Pflanzen erkennen ähnlich wie Säugetiere bakterielles Endotoxin

Pflanzen besitzen, wie auch Menschen und Tiere, eine natürliche Immunität, die der Abwehr von Krankheitserregern dient. Molekulare Strukturen der Erreger, die nicht in Menschen, Tieren oder Pflanzen vorkommen, dienen dabei als Erkennungsmerkmal und Auslöser der Immunantwort. Lipopolysaccharid (Endotoxin) aus der Außenhülle bestimmter Bakterien ist eine solche Substanz. Ein Wissenschaftler-Team von der Technischen Universität München (TUM), dem Leibniz-Institut für Pflanzenbiochemie in Halle (IPB) und dem Leibniz-Zentrum für Medizin und Biowissenschaften in Borstel hat nun den ersten Immunsensor für Lipopolysaccharid in Pflanzen beschrieben.

Nicht nur Menschen und Tiere, sondern auch Kulturpflanzen wie beispielsweise Tomate, Kohlgewächse und Reis werden von Bakterien befallen. Das verursacht weltweit wirtschaftlich bedeutende Ernteverluste. Pflanzen sind jedoch nicht wehrlos, denn sie besitzen ein natürliches Immunsystem. Verschiedene Immunsensoren erkennen dabei Substanzen, die nur in Mikroorganismen vorkommen und lösen Abwehrreaktionen aus. In Säugetieren erkennt der „Toll-Like Receptor 4“ beispielsweise Lipopolysaccharid, das auch als Endotoxin bezeichnet wird und der Hauptbestandteil der Außenhülle von vielen bakteriellen Krankheitserregern ist.

Da auch Pflanzen auf Lipopolysaccharid mit einer Immunantwort reagieren, wurde angenommen, dass sie auch einen Immunsensor für diese Substanz besitzen. Die Natur dieses Sensors war aber bis jetzt unbekannt. Ein Team aus Wissenschaftlern verschiedener Disziplinen hat jetzt den Erkennungsmechanismus für bakterielles Lipopolysaccharid in der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) entschlüsselt.

Die Suche nach dem pflanzlichen Lipopolysaccharid-Sensor war schwierig, da es sich bei dem Endotoxin nicht um ein definiertes Molekül, sondern um ein komplexes Gemisch von ähnlichen Lipopolysaccharid-Molekülen handelt. Es lässt sich daher bisher auch nicht synthetisch für Versuche herstellen. Die Analyse, Reinigung und chemische Auftrennung der Bestandteile des Lipopolysaccharids am Forschungszentrum Borstel war deshalb eine wichtige Voraussetzung für die genetischen und biochemischen Tests an Pflanzen an der TUM und am IPB.

Protein LORE hilft Pflanzen bei Abwehr von Bakterien

Die Wissenschaftler konnten jetzt entschlüsseln, mit welchem Sensor Arabidopsis-Pflanzen Lipopolysaccharid erkennen. Sie zeigten mit ihren Experimenten, dass das von ihnen entdeckte Protein LORE („LipoOligosaccharide-specific Reduced Elicitation“) diese Aufgabe übernimmt und die nachfolgende Immunabwehr einleitet. LORE unterscheidet sich in seinem Aufbau aber von tierischen Lipopolysaccharid-Sensoren. Die Evolution hat dieses Prinzip der Erkennung also zweimal – in Tieren und Pflanzen - unabhängig voneinander hervorgebracht.

Die Wissenschaftler konnten ebenfalls zeigen, dass trotz des unterschiedlichen Aufbaus der Sensoren sowohl Tiere als auch Pflanzen denselben Bestandteil des Lipopolysaccharid, das so genannte Lipid A, erkennen. Lipid A kann bei Menschen und Säugetieren zu einer überschießenden Immunantwort mit lebensbedrohlichen Komplikationen, der Sepsis und dem septischen Schock, führen.

Interessanterweise weisen nicht alle Pflanzen den Immunsensor LORE auf, sondern ausschließlich Kreuzblütler. Zu dieser Pflanzenfamilie gehören neben Arabidopsis wichtige Kulturpflanzen wie Kohlgewächse, Senf und Raps. Die Wissenschaftler fanden aber weiterhin heraus, dass der Sensor seine Funktion behält, wenn man ihn in andere Pflanzen überträgt. Somit könnte er als Werkzeug zur Erforschung und Erzeugung von Pflanzen mit verbesserter Resistenz gegen bakterielle Erreger dienen, meinen die Forscher.

Die Arbeiten wurden durch den Sonderforschungsbereich 924 sowieso das Schwerpunktprogramm 1212 der Deutschen Forschungsgemeinschaft unterstützt.

Originalpublikation
Stefanie Ranf, Nicolas Gisch, Milena Schäffer, Tina Illig, Lore Westphal, Yuriy A. Knirel, Patricia M. Sánchez-Carballo, Ulrich Zähringer, Ralph Hückelhoven, Justin Lee & Dierk Scheel, A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana, Nature Immunology.
DOI: 10.1038/ni.3124

Kontakt:
Dr. Stefanie Ranf
Technische Universität München
Lehrstuhl für Phytopathologie
Tel.: +49 (0)8161 715626
ranf(at)wzw.tum.de

Prof. Dr. Dierk Scheel
Leibniz-Institut für Pflanzenbiochemie (IPB) in Halle
Tel.: +49 (0)345 5582 1400
dscheel(at)ipb-halle.de

Weitere Informationen

Pressemitteilung des IPB

Corporate Communications Center

Technische Universität München Dr. Vera Siegler
vera.siegler(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Dr. Stefanie Ranf im Labor.

Wie Pflanzen sich zur Wehr setzen

Nicht nur Menschen und Tiere, auch Pflanzen wehren sich mit Hilfe ihres Immunsystems gegen Krankheitserreger. Doch wodurch wird die zelluläre Abwehr aktiviert? Forscher an der Technischen Universität München (TUM) haben...

Für viele Pflanzenarten, wie die in der Forschung beliebte Ackerschmalwand, aber auch für Nutzpflanzen wie Mais, Reis und Weizen gibt es Initiativen, welche die Genomsequenz vieler Unterarten und Sorten erfassen. (Foto: Regnault/ TUM)

Mit Pflanzendimmer den Klimawandel austricksen?

Pflanzen besitzen Mechanismen, die verhindern, dass sie im Winter blühen. Ist die Winterkälte vorbei, sind diese inaktiviert. Doch auch wenn es im Frühling zu kühl ist, passen Pflanzen ihr Blühen an. Wissenschaftler der...

Die Forscher haben den Mechanismus gefunden, der bei der schottischen Ackerschmalwand eine um zwei Wochen frühere Blüte auslöst als bei ihren Verwandten in wärmeren Regionen. (Foto: U. Lutz/ TUM)

Blütezeit von Pflanzen wird vorhersagbar

Pflanzen passen ihre Blütezeit der Temperatur ihrer Umgebung an. Doch was genau löst ihre Blüte auf molekularer Ebene aus? Kann dieser Faktor das Blühen an- oder ausknipsen und damit auf ein verändertes Klima reagieren? In...

Wuchsdefekte der Modellpflanze Ackerschmalwand (Arabidopsis thaliana), die durch fehlende Steroidhormonwirkung ausgelöst werden (linke Seite), konnten durch Wiederherstellen der Gibberellinproduktion behoben werden (rechte Seite). (Foto: Brigitte Poppenberger / TUM)

Pflanzenwachstum: Teamwork zweier Hormone nötig

Es gibt zwei wachstumsfördernde Stoffgruppen in Pflanzen, die unabhängig voneinander bei Kulturpflanzen eingesetzt werden: Die Phytohormone Gibberelline und die Brassinosteroide. Nun haben Wissenschaftler der Technischen...

Das Foto zeigt, wie wichtig Brassinosteroide für die Entwicklung von Pflanzen sind: Ein Mangel des Pflanzenhormons (rechts) führt zu Wachstumsstörungen, hier bei Gurkenpflanzen.

Wie Steroidhormone Pflanzen wachsen lassen

Pflanzen können sich außergewöhnlich schnell an Veränderungen in ihrer Umgebung anpassen. Dabei helfen ihnen Botenstoffe, die unmittelbar nach Licht- und Temperaturreizen aktiv werden. Eine Schlüsselstellung nehmen hier...

Pflanzen wachsen zum Licht – verantwortlich dafür ist das Pflanzenhormon Auxin.

Wie wachsen Pflanzen zum Licht?

Pflanzen haben mehrere Strategien entwickelt, um mit ihren Blättern möglichst viel Sonnenlicht einzufangen. Wie sich auch bei Topfpflanzen am Wohnzimmerfenster beobachten lässt, wachsen Pflanzen immer in Richtung des...