Ein zuckerartiger Ligand (gelb) bindet an die Borsäuregruppe (grün) in der Tasche des Bindeproteins (pink).
Aktuelle Forschungsergebnisse des Labors von Prof. Skerra eröffnen den Weg zur Entwicklung neuartiger Bindeproteine für biologische Zuckerstrukturen, die sowohl bei Krebs- als auch bei Infektionserkrankungen eine große Rolle spielen. - Zu sehen ist hier ein zuckerartiger Ligand (gelb), der an die Borsäuregruppe (grün) in der Tasche des Bindeproteins (pink) bindet. (Bild: Lehrstuhl für Biologische Chemie)
  • Forschung

Künstliches zuckerbindendes Protein könnte Zellwachstum bremsenZuckerstrukturen auf Viren und Tumorzellen blockieren

Bei einer Virusinfektion gelangen Viren in den Organismus und vermehren sich in den Körperzellen. Viren setzen sich oft gezielt auf die Zuckerstrukturen der Zellen ihres Wirts oder präsentieren ihrerseits charakteristische Zuckerstrukturen auf ihrer Oberfläche. Forschende der TUM haben ein neuartiges Proteinreagenz zur Erkennung biologischer Zuckerstrukturen entwickelt, das die Ausbreitung einer Erkrankung im Körper blockieren kann, wenn es an die Zuckerstrukturen einer Zelle oder eines Erregers andockt.

Das Labor von Arne Skerra, Professor für Biologische Chemie, an der Technischen Universität München (TUM) beschäftigt sich mit der Herstellung von künstlichen Bindeproteinen, die für therapeutische Zwecke einsetzbar sind. Aktuelle Forschungsergebnisse des Labors eröffnen nun den Weg zur Entwicklung neuartiger Bindeproteine für biologische Zuckerstrukturen, die sowohl bei Krebs- als auch bei Infektionserkrankungen eine große Rolle spielen.

Erkennung biologischer Zuckerstrukturen

„Die Erkennung von speziellen Zuckermolekülen, sogenannten Kohlenhydraten, ist bei vielen biologischen Prozessen von entscheidender Bedeutung“, erklärt Prof. Skerra. Damit der Körper erkennt, wohin welche Zellen gehören oder ob Zellen fremd sind, haben diese häufig einen Marker aus Zuckerketten, die an die Außenseite der Zellmembran oder an Membranproteine geknüpft sind. Auch Krankheitserreger verfügen über eigene Zuckerstrukturen oder können sich daran festsetzen.  

Proteine, die vielfältigen Funktionsträger aller Zellen, haben jedoch ganz allgemein eine geringe Affinität gegenüber Zuckern. Deren molekulare Erkennung ist also schwierig. Grund dafür: Wasser sieht den Zuckermolekülen ähnlich, so dass diese in der wässrigen Umgebung der Zellen quasi getarnt sind. Die Gruppe von Prof. Skerra machte sich auf die Suche nach einem künstlichen Bindeprotein mit einer chemischen Gruppierung, die die biologischen Zuckerstrukturen leichter erkennen lässt.

Borsäuregruppe als Aminosäure in Protein eingebaut

Aminosäuren sind die Bausteine der Proteine. Üblicherweise nutzt die Natur für die Vielfalt der Proteine nur 20 Aminosäuren. „Mit den Mitteln der Synthetischen Biologie nutzten wir zusätzlich eine künstliche Aminosäure“, berichtet Forscherin Carina A. Sommer.

„Uns ist es gelungen, eine Borsäuregruppe, die von sich aus Affinität zu Zuckermolekülen hat, gezielt in die Aminosäurekette eines Proteins einzubauen. Damit haben wir eine grundlegende neue Klasse von Bindeproteinen für Zuckermoleküle kreiert“, erklärt Sommer. Diese künstliche Zuckerbindefunktion ist natürlichen Bindeproteinen (so genannten Lektinen) in ihrer Stärke und auch den Möglichkeiten zur spezifischen Ausgestaltung überlegen.

„Die Zucker-Bindungsaktivität von Borsäure und ihren Derivaten ist seit fast einem Jahrhundert bekannt“, sagt Prof. Skerra. „Borsäure ist in der unbelebten Natur verbreitet und kaum toxisch, aber sie wird von Organismen bislang praktisch nicht genutzt.“

„Mit Hilfe der Röntgenstrukturanalyse haben wir es geschafft, die Kristallstruktur eines Modell-Komplexes dieses künstlichen Proteins aufzuklären und konnten damit unser biomolekulares Konzept bestätigen“, erklärt Wissenschaftler Dr. Andreas Eichinger.

Nächster Schritt: Entwicklung für konkrete medizinische Anwendungen

Nach etwa fünf Jahren Grundlagenforschung kann die Entwicklung aus Prof. Skerras Labor nun für konkrete medizinische Anwendungen genutzt werden. „Unsere Erkenntnisse sollten nicht nur die zukünftige Entwicklung von neuartigen Kohlenhydratliganden in der Biologischen Chemie unterstützen, sondern sie ebnen den Weg zu hochaffinen Wirkstoffen zur Ansteuerung oder Blockierung medizinisch relevanter Zuckerstrukturen auf Zelloberflächen“, fasst Prof. Skerra zusammen.

Das „Blockierungsmittel“ könnte beispielsweise bei Erkrankungen zum Einsatz kommen, bei denen starkes Zellwachstum oder das Andocken von Krankheitserregern an Zellen eine Rolle spielt, also in der Onkologie und der Virologie. Wenn es gelingt, die Zuckerbindungsfunktion zu blockieren und die Erkrankung zu bremsen, verschafft man damit dem Immunsystem mehr Zeit, die körpereigene Abwehr vorzubereiten.

Publikationen:

Carina A. Sommer, Andreas Eichinger, and Arne Skerra (2020): A Tetrahedral Boronic Acid Diester Formed by an Unnatural Amino Acid in the Ligand Pocket of an Engineered Lipocalin. ChemBioChem 21:469-472. DOI: 10.1002/cbic.201900405

Mehr Informationen:

Hochauflösende Bilder: https://mediatum.ub.tum.de/1540812

Corporate Communications Center

Technische Universität München Dr. Katharina Baumeister-Krojer
katharina.baumeister(at)tum.de
Tel: 08161/ 71-5403

Kontakte zum Artikel:

Prof. Dr. Arne Skerra
Technische Universität München
Lehrstuhl für Biologische Chemie
Tel.: +49 (0)8161 71-4351
skerra(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Dr. Sabrina Schreiner in ihrem Labor am Institut für Virologie am Helmholtz-Zentrum München.

Undercover gegen Adenoviren

Eine Infektion mit Adenoviren kann besonders für Kinder nach einer Stammzelltransplantation lebensgefährlich sein. Virologinnen und Virologen der Technischen Universität München (TUM) und des Helmholtz Zentrums München...

Indem ein spezieller Eisen-Komplexbildner neutralisiert wird, kann der Anthrax-Bazillus kein Eisen mehr aufnehmen.

Neuer Wirkstoff gegen Anthrax

Ein Team um Professor Arne Skerra hat an der Technischen Universität München (TUM) eine neuartige Strategie entwickelt, um den Anthrax-Bazillus daran zu hindern, das für ihn lebensnotwendige Eisen aufzunehmen, indem sein...

Methionin im Futter verbessert das Wachstum von Masttieren wie etwa Geflügel. Die Jahresproduktion von Methionin beträgt derzeit etwa eine Million Tonnen weltweit. (Bild: iStock/ Maerzkind)

Durchbruch bei industrieller CO2-Nutzung

Professor Arne Skerra ist es an der Technischen Universität München (TUM) erstmals gelungen, in einer biotechnischen Reaktion gasförmiges CO2 als Grundstoff für die Produktion eines chemischen Massenprodukts zu verwenden....

Beim Grillem im Sommer entsteht bei der Reaktion von Fett mit glühender Kohle Benzopyren, ein verbreitetes Umweltgift, das beim Menschen Krebs auslösen kann. (Foto: Fotolia/Dederer)

Antikörper gegen krebserregenden Stoff entschlüsselt

Sommer ist Grillzeit. Allerdings entsteht bei der Reaktion von Fett mit glühender Kohle ein Stoff, den Chemiker Benzopyren nennen. Ein Umweltgift, das beim Menschen Krebs auslösen kann. Da über viele Jahrzehnte Häuser mit...