• 25.6.2014

Wissenschaftler kartieren molekulare Duftstoffsignaturen von Lebensmitteln

Geruchscode von Lebensmitteln entschlüsselt

Erdbeeren, Kaffee, Grillfleisch oder frisch gekochte Kartoffeln: Wie kommt es, dass man diese Lebensmittel an ihrem Geruch erkennt? Mehr als 10.000 verschiedene flüchtige Stoffe kommen in Lebensmitteln vor. Doch nur etwa 230 davon prägen das Aroma unserer häufigsten Lebensmittel. Den typischen Geruch eines einzelnen Lebensmittels wiederum kodieren nur drei bis 40 dieser Schlüsselaromen; dechiffriert werden diese Verbindungen von etwa 400 Geruchsrezeptoren in der Nase. Dies zeigen Wissenschaftler in einer Studie, die in der Fachzeitschrift <i>Angewandte Chemie</i> erschienen ist.

Collage aus verschiedenen Lebensmitteln und chemischen Strukturen.
Die typische Duftnote von Lebensmitteln wird von wenigen Schlüsselaromen kodiert. (Bild: A. Dunkel, Ch. Sturz / TUM)

Neben den fünf Geschmacksrichtungen süß, bitter, salzig, sauer und umami tragen viele verschiedene Geruchsnoten zum sensorischen Gesamteindruck eines Lebensmittels bei. In den letzten Jahrzehnten wurden etwa 10.000 flüchtige Verbindungen in Lebensmitteln identifiziert. Wissenschaftler der Technischen Universität München (TUM) und der Deutschen Forschungsanstalt für Lebensmittelchemie (DFA) führten eine Meta-Analyse der Geruchsstoffmuster von 227 Lebensmittelproben durch.

Cognac mit komplexer Duftnote

Dabei erhielten sie ein überraschendes Ergebnis: Die nahezu unbegrenzte Vielfalt an Lebensmittelaromen beruht auf 230 Schlüsselgeruchsstoffen. Außerdem gibt es für jedes Lebensmittel einen individuellen Geruchscode, der sich aus einer Kerngruppe von nur drei bis 40 der 230 Schlüsselaromen - in spezifischen Konzentrationen - zusammensetzt. Diese kleinen Gruppen an Geruchsstoffen verleihen verschiedensten Lebensmitteln, von Ananas über Wein bis hin zu gebratenem Fleisch, ihre unverwechselbare Duftnote.

„So ist zum Beispiel der Duft von Sauerrahmbutter durch eine Kombination aus nur drei Schlüsselmolekülen kodiert, bei frischen Erdbeeren sind es 12“, erklärt Prof. Peter Schieberle von der Deutschen Forschungsanstalt für Lebensmittelchemie. Spitzenreiter ist Cognac: Für den Branntwein-Klassiker müssen 36 Schlüsselmoleküle zusammenspielen.

Gehirn verarbeitet Einzelinformationen zu einer neuen Duftgestalt

Die chemischen Geruchscodes werden beim Verzehr von Lebensmitteln in olfaktorische Reizmuster übersetzt. Dafür müssen die Schlüsselgeruchsstoffe mit einem oder mehreren der 400 Geruchsrezeptoren in der Nase interagieren. „Mit der Kombination von nur wenigen Schlüsselaromen lässt sich eine authentische Geruchswahrnehmung erzeugen. Dies ist umso erstaunlicher, da die Geruchsqualität der Kombinationen nicht von den Einzelkomponenten bestimmt wird“, sagt Prof. Thomas Hofmann vom TUM-Lehrstuhl für Lebensmittelchemie und molekulare Sensorik.

Wenn Menschen externe chemische Geruchsmuster wahrnehmen und neuronal verarbeiten, addieren sich die einzelnen Aromakomponenten nicht einfach. Vielmehr werden die olfaktorischen Einzelinformationen in eine neue Duftgestalt übersetzt. „Angesichts der kombinatorischen Natur des chemischen Aromacodes und der Vielzahl von circa 400 unterschiedlichen Geruchsrezeptoren scheint die Zahl der wahrnehmbaren Geruchsqualitäten nahezu unbegrenzt zu sein“, sagt Schieberle.

Optimierte Aromen in der Lebensmittelproduktion

Bislang kennt man 42 Rezeptoren, die auf Lebensmittelaromen ansprechen – wobei die meisten davon mehrere Geruchsmoleküle binden. „Mit der Geruchsstoffkartierung der 230 jetzt bekannten Schlüsselaromen können Wissenschaftler testen, welche Rezeptorkombinationen für Lebensmittelaromen ‚reserviert’ sind“, sagt Hofmann. „So können wir die biologische Relevanz von Aromen künftig noch genauer darstellen.“

Die Kartierung der Geruchscodes eröffnet neue Möglichkeiten für biotechnologische Anwendungen. So kann zum Beispiel bei der Züchtung hilfreich sein, dass die Aromacodes von Nutzpflanzen und Früchten auf molekularer Ebene bekannt sind: In der Vergangenheit war die Züchtung weniger auf die sensorische Qualität als vielmehr auf die Steigerung von Ertrag und Flächenleistung ausgerichtet. Die Erkenntnisse bilden auch die wissenschaftliche Grundlage für die nächste Generation einer Bioaromenproduktion, die das Potenzial von optimierten Biosynthesewegen in Pflanzen zur industriellen Herstellung hochwertiger Lebensmittelgeruchsstoffe nutzt.

Mit der aktuellen Geruchsstoffkartierung wird zudem die natürliche Nachbildung von Aromen mit zunehmender Präzision ermöglicht. Damit rücken neue Anwendungen in mobilen Kommunikationssystemen wie zum Beispiel das Senden von Geruchsnachrichten mit dem Smartphone oder auch bei der Entwicklung bioelektronischer Nasen in greifbare Nähe.

Publikation:
Andreas Dunkel, Martin Steinhaus, Matthias Kotthoff, Bettina Nowak, Dietmar Krautwurst, Peter Schieberle und Thomas Hofmann; Genuine Geruchssignaturen der Natur - Perspektiven aus der Lebensmittelchemie für die künftige Biotechnologie, Angewandte Chemie, DOI: 10.1002/ange.201309508


Kontakt:
Prof. Dr. Thomas Hofmann
Lehrstuhl für Lebensmittelchemie und molekulare Sensorik
Tel.: +49 8161 71-2902
thomas.hofmannspam prevention@tum.de
www.molekulare-sensorik.de

Technische Universität München

Corporate Communications Center

Aktuelles zum Thema

HSTS