Sherry Suyu, Professorin für Observational Cosmology.
Bild: Astrid Eckert / TUM
  • Forschung
  • Lesezeit: 3 MIN

Verbessertes Modell für die Massenverteilung des Galaxienhaufens SMACS J0723.3−7327 erstelltJames-Webb-Teleskop enthüllt weit entfernte Galaxien

Dank des ersten wissenschaftlichen Bildes, das diesen Monat vom James Webb Space Telescope (JWST) veröffentlicht wurde, konnte ein internationales Team von Forschenden unter Beteiligung der Technischen Universität München (TUM) ein verbessertes Modell für die Massenverteilung des Galaxienhaufens SMACS J0723.3−7327 erstellen. Als Gravitationslinse vervielfacht und vergrößert dieser Galaxienhaufen Bilder von Hintergrundgalaxien. Eine Familie solcher Mehrfachbilder gehört zu einer Galaxie, deren Entfernung sich mithilfe des neuen Modells auf 13 Milliarden Lichtjahren schätzen lässt.

Das erste vom James Webb Space Telescope (JWST) veröffentlichte wissenschaftliche Bild zeigt den Galaxienhaufen SMACS J0723.3−7327. Insbesondere Galaxienhaufen können als Gravitationslinsen wirken und das Licht von Hintergrundgalaxien verstärken sowie mehrere Bilder von diesen erzeugen. Vor JWST waren hinter SMACS J0723.3−7327 insgesamt 19 Mehrfachbilder von sechs Hintergrundquellen bekannt. Die JWST-Daten enthüllten nun 27 zusätzliche Mehrfachbilder von zehn weiteren Objekten.

„In diesem ersten Schritt haben wir die Daten dieses brandneuen Teleskops verwendet, um den Linseneffekt von SMACS0723 mit großer Genauigkeit zu modellieren“, sagt Gabriel Bartosch Caminha, Postdoc-Fellow der TUM, des Max-Planck-Instituts für Astrophysik (MPA) und dem German Centre for Cosmological Lensing (GCCL). Die Forschenden verwendeten zunächst Daten des Hubble Space Telescopes (HST) und des Multi Unit Spectroscopic Explorers (MUSE), um ein „Pre-JWST“-Linsenmodell zu erstellen, und verfeinerten es dann mit der neu verfügbaren JWST-Nahinfrarot-Bildgebung. „Die JWST-Aufnahmen sind absolut verblüffend und wunderschön. Sie zeigen viel mehr Mehrfachbilder von Hintergrundquellen, die es uns ermöglichten, unser Massenmodell für die Gravitationslinse erheblich zu verfeinern“, fügt er hinzu.

13 Milliarden Lichtjahre entfernt

Von den neu entdeckten, gelinsten Objekten gibt es bisher noch keine Entfernungsschätzungen. Die Wissenschaftlerinnen und Wissenschaftler verwendeten ihr neues Modell für die Massenverteilung, um die Entfernung dieser Linsengalaxien abzuschätzen. Ein Objekt scheint sich demnach in der erstaunlichen Entfernung von 13 Milliarden Lichtjahren zu befinden (Rotverschiebung > 7,5), das heißt, sein Licht wurde in den frühen Entwicklungsstadien unseres Universums emittiert. Von dieser Galaxie entstanden drei Mehrfachbilder und ihre Helligkeit wurde insgesamt um etwa das 20-fache verstärkt.

Um solche weit entfernten Objekte zu untersuchen, ist es jedoch von grundlegender Bedeutung, den Linseneffekt des Galaxienhaufens im Vordergrund genau zu beschreiben. „Unser genaues Massenmodell bildet die Grundlage für die Exploration der JWST-Daten“, betont Sherry Suyu, Professorin für Observational Cosmology an der TUM, Forschungsgruppenleiterin am MPA und dem Exzellenzcluster Origins und Gastwissenschaftlerin am Institut für Astronomie und Academia Sinica Astrophysik. „Die spektakulären JWST-Bilder zeigen eine große Vielfalt stark gelinster Galaxien, die dank unseres genauen Modells jetzt im Detail untersucht werden können“, erläutert sie.

Das neue Modell für die Massenverteilung des Vordergrundhaufens ist in der Lage, die Positionen aller Mehrfachbilder mit hoher Genauigkeit zu reproduzieren und ist damit eines der besten verfügbaren Massenmodelle. Für Folgestudien dieser Quellen werden die Linsenmodelle, einschließlich Vergrößerungskarten und Rotverschiebungen (also Entfernungen), die aus dem Modell geschätzt werden, öffentlich zugänglich gemacht. „Wir freuen uns sehr darüber“, fügt Suyu hinzu, „und wir warten gespannt auf zukünftige JWST-Beobachtungen anderer Galaxienhaufen mit starkem Linseneffekt. Diese werden es uns nicht nur ermöglichen, die Massenverteilungen von Galaxienhaufen besser einzugrenzen, sondern auch Galaxien mit hoher Rotverschiebung zu untersuchen.“

  • Das erste Bild des James-Webb-Space-Teleskops vom Galaxienhaufen SMACS J0723 enthüllt stark gelinste Hintergrundgalaxien in beispiellosen Einzelheiten. Der weiße Balken unten zeigt die Größenskala: 50 Bogensekunden entsprechen ungefähr der maximalen Größe des Jupiters von der Erde aus.

    Das erste Bild des James-Webb-Space-Teleskops vom Galaxienhaufen SMACS J0723 enthüllt stark gelinste Hintergrundgalaxien in beispiellosen Einzelheiten. Der weiße Balken unten zeigt die Größenskala: 50 Bogensekunden entsprechen ungefähr der maximalen Größe des Jupiters von der Erde aus.

    Bild: NASA, ESA, CSA and STScI
  • In diesem Bild sind die Mehrfahrbilder der Hintergrundbilder nummeriert. Dabei sind bereits bekannte Systeme cyan markiert, neue Mehrfach-Systeme grün. Die vergrößerten Bilder zeigen eine weit entfernte Galaxie mit strukturellen Auffälligkeiten (grüne Pfeile).

    In diesem Bild sind die Mehrfahrbilder der Hintergrundbilder nummeriert. Dabei sind bereits bekannte Systeme cyan markiert, neue Mehrfach-Systeme grün. Die vergrößerten Bilder zeigen eine weit entfernte Galaxie mit strukturellen Auffälligkeiten (grüne Pfeile).

    Bild: NASA, ESA, CSA and STScI (annotations by MPA)

Publikationen:

  • G. B. Caminha, S. H. Suyu, A. Mercurio, G. Brammer, P. Bergamini, A. Acebron, and E. Vanzella: First JWST observations of a gravitational lens - Mass model of new multiple images with near-infrared observations of SMACS J0723.3−7327, submitted to A&A Letters
    https://arxiv.org/abs/2207.07567

Technische Universität München

Corporate Communications Center CCC / Hannelore Hämmerle (MPA)
presse(at)tum.de

Kontakte zum Artikel:

Technische Universität München
Professur für Observational Cosmology
Prof. Dr. Sherry Suyu
sherry.suyu(at)tum.de

Dr. Gabriel Bartosch Caminha
gb.caminha(at)tum.de  

Weitere Artikel zum Thema auf www.tum.de:

Prof. Dr. Sherry Suyu

Sherry Suyu erhält Berkeley-Preis 2021

Sherry H. Suyu, Professorin für beobachtende Kosmologie an der Technischen Universität München (TUM) und Gruppenleiterin am Max-Planck-Institut für Astrophysik (MPA), erhält den Lancelot M. Berkeley-New York Community Trust…

Zur Messung der Hubble-Konstante wurden Aufnahmen des Hubble-Weltraumteleskops verwendet, die weit entfernte Quasare zeigen, deren Licht von Vordergrundgalaxien umgelenkt wird. (Bild: S. H. Suyu / TUM / MPA, K. C. Wong / Univ. Tokio; NASA; ESA)

Hubble-Konstante: Messung mit Hilfe kosmischer Linsen

Die Bestimmung der Hubble-Konstante, ein Maß für die Expansion des Universums, ist seit Jahren eine der spannendsten Herausforderungen der Physik: Messungen im heutigen Universum liefern andere Werte als solche in der…

HE0435-1223, in der Mitte des Bildes, gehört zu den fünf besten Gravitationslinsen-Quasaren, die bisher entdeckt wurden. Die Vordergrundgalaxie erzeugt hier vier nahezu gleichmäßig verteilte Bilder des dahinter liegenden Quasars. Bild: Suyu et al. / ESA/Hubble, NASA

Der kosmische Blick um die Ecke

Indem sie Galaxien als riesigen Gravitationslinsen nutzten, führte eine internationale Gruppe von Astronomen um Max Planck@TUM-Professorin Sherry Suyu eine unabhängige Messung der Hubble-Konstante durch, die beschreibt, wie…

HSTS