TUM – Technische Universität München Menü
IceCube-Observatorium in der Antarktis - Foto: Emanuel Jacobi/NSF
IceCube-Observatorium in der Antarktis - Foto: Emanuel Jacobi/NSF
  • Forschung

Südpol-Observatorium IceCube liefert erste Belege für Neutrinos aus kosmischen Beschleunigern

Rasende Teilchen aus dem All

Zum ersten Mal gibt es konkrete Hinweise auf hochenergetische Neutrinos, die von außerhalb unseres Sonnensystems stammen. Das IceCube-Experiment, ein riesiges Neutrino-Observatorium in der Antarktis, an dem die Technische Universität München (TUM) beteiligt ist, hat 28 Neutrinos beobachtet, die mit hoher Wahrscheinlichkeit von kosmischen Objekten wie Supernovae, Schwarzen Löchern, Pulsaren oder anderen extremen kosmischen Phänomenen stammen.

Aus dem Universum prasseln ständig unterschiedlichste Arten von Teilchen auf die Erdatmosphäre. Die meisten davon, wie etwa Protonen, Elektronen oder Heliumkerne haben eine gewisse Masse und sind elektrisch geladen. Wenn sie mit anderen Teilchen zusammenstoßen oder in Magnetfeldern des Kosmos, der Sonne oder der Erde abgelenkt werden, ändern sie ihre Richtung und Energie.

Anders dagegen die ladungslosen und extrem leichten Neutrinos: Sie rauschen beinahe ungestört durch alle Materie hindurch. In jeder Sekunde passieren Milliarden von Neutrinos jeden Quadratzentimeter der Erde. Die überwiegende Mehrheit dieser Elementarteilchen entstand in Zerfalls- oder Umwandlungsprozessen in der Sonne oder der Erdatmosphäre.

Weit seltener sind Neutrinos, die aus Quellen außerhalb unseres Sonnensystems stammen, vom äußeren Rand unserer Galaxie oder aus noch größerer Ferne. Solche astrophysikalischen Neutrinos sind für Physiker hochinteressant. Sie geben Einblick in die mächtigen kosmischen Objekte, von denen sie herrühren: Supernovae, schwarze Löcher, Pulsare, aktive galaktischen Kerne und andere extreme extragalaktischen Phänomene.

Nun berichten die Wissenschaftler des IceCube-Experiments, an dem auch Forscher des Exzellenzclusters Universe der TUM beteiligt sind, dass sie erstmals hochenergetische Neutrinos beobachtet haben. Die 28 Ereignisse wurden zwischen Mai 2010 und Mai 2012 gemessen. Jedes dieser Neutrinos hatte eine Energie von mehr als 50 Teraelektronenvolt (TeV). Das ist tausendmal mehr als jemals ein Neutrino in einem irdischen Beschleunigerexperiment erreicht hat.

„Dies sind die ersten Nachweise von Neutrinos von außerhalb unseres Sonnensystems“, sagt TUM-Physikerin Professor Dr. Elisa Resconi, die auch Mitglied der IceCube-Kollaboration ist. „Diese Ereignisse können weder durch andere Ursachen erklärt werden, etwa durch atmosphärische Neutrinos, noch durch andere hochenergetische Ereignisse, wie etwa Myonen, die durch Wechselwirkungen mit der kosmischen Strahlung in der Erdatmosphäre entstehen.“

Nach Hunderttausenden atmosphärischer Neutrinos sind die Forscher nun sicher endlich auch Neutrinos nachgewiesen zu haben, die ihre Erwartungen an astrophysikalische Neutrinos erfüllen und damit höchstwahrscheinlich von kosmischen Beschleunigern stammen. „Nun müssen wir klären, woher diese Neutrinos stammen und wie sie entstanden sind. Wir stehen damit erst am Anfang einer neuen Astronomie mit Neutrinos“, sagt Elisa Resconi.

IceCube ist ein ins ewige Eis des Südpols eingeschmolzenes Neutrino-Observatorium, dessen Installation im Jahr 2010 nach sieben Jahren Bauzeit abgeschlossen wurde. Mit einer Größe von einem Kubikkilometer stellt es den weltweit größten Neutrino-Detektor dar. In einer Tiefe von 1450 bis 2450 Metern sind 86 vertikale Drahtseile mit insgesamt 5160 optischen Sensoren versenkt. IceCube beobachtet die Neutrinos mittels winziger blauer Lichtblitze, dem Cherenkov-Licht, das entsteht, wenn Neutrinos mit Eis interagieren und dabei Teilchenschauer geladener Teilchen erzeugen. Betrieben wird das Observatorium von einem internationalen Konsortium unter Leitung der University of Wisconsin, Madison (USA), an der rund 250 Wissenschaftler und Ingenieure aus USA, Deutschland, Schweden, Schweiz, Japan sowie weiteren Ländern beteiligt sind.

Publikation:

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, IceCube Collaboration, Science, Vol. 342 no. 6161, 22. Nov. 2013 – DOI: 10.1126/science.1242856

Kontakt:

Prof. Dr. Elisa Resconi
Technische Universität München
Fachgebiet Experimentalphysik kosmischer Partikel
Exzellenzcluster Universe
Boltzmannstr. 2, 85748 Garching, Germany
Tel.: +49 89 35831 7120E-Mail

Corporate Communications Center

Technische Universität München

Weitere Artikel zum Thema auf www.tum.de:

Die Kohnen-Station ist eine Containersiedlung in der Antarktis, aus deren Nähe die Schneeproben stammen, in denen Eisen-60 gefunden wurde.

Sternenstaub im antarktischen Schnee

Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60. Nur eine sehr geringe Menge davon gelangt von fernen Sternen auf die Erde. Jetzt hat ein Forschungsteam unter der Leitung von Physikern der Technischen...

Prof. Elisa Resconi mit einem der im IceCube-Observatorium eingesetzten Photo-Detektoren. (Bild: Magdalena Jooß / TUM)

Liesel Beckmann-Professur für Elisa Resconi

Die Technische Universität München (TUM) hat der Neutrinophysikerin Prof. Elisa Resconi eine Liesel Beckmann-Professur verliehen. Die nach ihrer ersten Professorin benannte Auszeichnung hat die TUM 2012 eingerichtet. Sie...

444 illuminierte Lautsprecher verwandeln aktuelle Forschung in ein begehbares Kunstwerk. (Bild: T. O. Roth / imachination projects)

Geisterteilchen als faszinierende Lichter und Klänge

Ein faszinierendes Kunsterlebnis bietet die Technische Universität München (TUM) am Wochenende des 9. und 10. Februar 2019 in der „Reaktorhalle“ der Musikhochschule in der Luisenstraße 37a. Die Licht- und Klang-Installation...

Neutrinos können Aufschluss über die inneren Vorgänge der Sonne geben.

Gesamtblick auf die Fusionsprozesse der Sonne

Forscherinnen und Forscher der Borexino-Kollaboration haben die bisher umfassendste Analyse von Neutrinos aus den Kernprozessen der Sonne veröffentlicht. Die Ergebnisse bestätigen bisherige Annahmen über die Prozesse im...

Das IceCube Lab am Südpol unter den Sternen.

Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Ein Team um die Physikerin Prof. Elisa Resconi von der Technischen Universität München (TUM) liefert ein wichtiges Indiz in...

Neutrino-Ereignisse gemessen mit dem IceCube-Observatorium am Südpol - Bild: IceCube Konsortium

Neuer Sonderforschungsbereich an der TUM

Neutrinos und Dunkle Materie stehen im Mittelpunkt der Forschung eines neuen Sonderforschungsbereichs (SFB) der Deutschen Forschungsgemeinschaft (DFG). Sprecherin des SFBs ist Elisa Resconi, Professorin für...

Der EXO-200 Detektor – Foto: SLAC

Kein Hinweis auf die Doppelnatur von Neutrinos

Ein Experiment tief unter der Stadt Carlsbad in New Mexico (USA) hat nach einer Suche von zwei Jahren bisher keinen Hinweis auf einen speziellen radioaktiven Zerfall gefunden, der bei Physikern als Vorbote einer neuen...

Dr. Nils Haag überprüft im Labor das Messsignal seines Doppeldetektors. In dem waagrechten Strahlrohr werden die Neutronen zu der bestrahlten Uranfolie geleitet, welche sich in der Mitte des Kreuzstücks befindet. Direkt unterhalb des Kreuzes liegt in der Verdickung die gasgefüllte Vieldrahtkammer.

Mit Antineutrinos Kernreaktoren überwachen

Bei der Überwachung von Kernreaktoren ist die Internationale Atomenergiebehörde (IAEA) in wichtigen Fragen auf die Angaben der Betreiber angewiesen. In Zukunft könnten Antineutrino-Detektoren eine unabhängige Möglichkeit...

Neutrino-Forschungsstation IceCube

Zweifel an Gammablitzen als Motor für kosmische Strahlung

Pausenlos wird unsere Erde von hochenergetischen Teilchen, der sogenannten kosmischen Strahlung, bombardiert. Sie besteht vor allem aus Protonen, Neutronen, Elektronen und Myonen, aber auch aus schweren Atomkernen. Obwohl...