TUM – Technische Universität München Menü
  • Forschung

Neue Bildgebungsmethode macht Sauerstoffgehalt in Gewebe sichtbar

Ein Blick unter die Haut

Wie blickt man in den menschlichen Körper, ohne zu operieren? Die Suche nach neuen Lösungen ist  eine wichtige Aufgabe der Medizinforschung. Eine der großen Herausforderungen auf diesem Feld ist es, Sauerstoff in Gewebe sichtbar zu machen. Ein Team um Prof. Vasilis Ntziachristos, Inhaber des Lehrstuhls für Biologische Bildgebung an der Technischen Universität München (TUM) und Direktor des Instituts für Biologische und Medizinische Bildgebung am Helmholtz Zentrum München, hat dazu einen neuen Ansatz entwickelt.

Einen Königsweg, um den Sauerstoffgehalt in Gewebe sichtbar zu machen, schien es bislang nicht zu geben. Viele unterschiedliche Verfahren wurden ausprobiert, aber jedes hat seine eigenen Nachteile. In den vergangenen Jahren haben sich die Forschungsbemühungen auf diesem Gebiet auf optoakustische Methoden konzentriert. Diese, insbesondere die Multispektrale optoakustische Tomografie (MSOT), sind eines der Kerngebiete der Arbeit von Vasilis Ntziachristos.

Vereinfacht gesagt, wird bei einer MSOT-Aufnahme Licht zuerst in Schall und dann in visuelle Informationen umgewandelt: Zunächst wird ein schwacher, pulsierender Laserstrahl auf das Körpergewebe gerichtet. Moleküle und Zellen, auf die der Strahl trifft, erwärmen sich geringfügig und reagieren mit minimalen Vibrationen, die wiederum Schallsignale erzeugen. Diese werden von Sensoren aufgenommen und in Bilder umgewandelt. Die Art und Weise, in der die einzelnen Zellen und Moleküle auf den Laser reagieren, hängt von ihren optischen Eigenschaften ab, die sich ihrerseits aus ihren biochemischen Eigenschaften ergeben.

Komplexes Gewebe erschwert die Analyse

Theoretisch lässt sich mithilfe von MSOT auch zeigen, wie viel Sauerstoff in Blut enthalten ist. In der Praxis gibt es jedoch ein erhebliches Hindernis: Je tiefer ein Lichtstrahl in Gewebe eindringt, desto weniger intensiv wird er. Das liegt nicht nur daran, dass der Strahl durch jede Schicht Zellen gefiltert wird, die er durchquert. Hinzu kommt, dass unterschiedliche Zellstrukturen innerhalb des Gewebes verschiedene Eigenschaften aufweisen, die beeinflussen, wie Licht gestreut und absorbiert wird. Diese Einflüsse müssen in Betracht gezogen werden, um bei einer MSOT aus den akustischen Signalen der Zellen die richtigen Schlüsse zu ziehen. In der Vergangenheit haben verschiedene Wissenschaftlerinnen und Wissenschaftler versucht, zu berechnen, wie das Gewebe die Verbreitung des Lichts beeinflussen wird. „Gewebe ist aber optisch so komplex, dass dieser Ansatz bisher noch nicht flexibel auf optoakustische Bilder von Gewebe im lebenden Organismus angewendet werden konnte“, sagt Stratis Tzoumas, Erstautor eines Artikels im Fachmagazin „Nature Communications“, in dem die Wissenschaftlerinnen und Wissenschaftler ihren neuen Ansatz beschreiben.

Eine neue Methode, Lichtverteilung in Gewebe zu beschreiben

Ntziachristos, Tzoumas und die anderen beteiligten Wissenschaftlerinnen und Wissenschaftler haben einen völlig anderen Ansatz entwickelt. Ihre eMSOT genannte Methode verzichtet von vornherein darauf, den Weg des Lichtes durch komplexes Gewebe zu berechnen. Stattdessen machen sich die Forscher die Entdeckung zunutze, dass sich das Spektrum des Lichts in Gewebe mithilfe einer kleinen Anzahl an Grundspektren beschreiben lässt. Diese sogenannten Eigenspektren – daher auch das „e“ in eMSOT – können vorab durch Computersimulationen ermittelt werden. Die Methode nutzt Daten eines konventionellen MSOT-Geräts in Kombination mit einem neuen Algorithmus. Dieser ist in der Lage, die Effekte der Lichtstreuung und –absorption innerhalb des Gewebes zu korrigieren und akkurate Bilder der Sauerstoffmenge innerhalb des Gewebes zu erstellen.

Mithilfe von eMSOT waren die Wissenschaftler in der Lage, den Sauerstoffgehalt von Blut in lebendem Gewebe einen Zentimeter unter der Hautoberfläche zu messen. „Theoretisch können wir die Messtiefe noch vergrößern“, sagt Stratis Tzoumas. „Bei ungefähr drei Zentimetern gibt es allerdings eine Grenze. Irgendwann durchdringt das Licht das Gewebe einfach nicht mehr.“ Im Vergleich zu anderen optischen und optoakustischen Ansätzen beobachteten die Forscher bei eMSOT eine drastisch verbesserte Genauigkeit der Ergebnisse. Zusätzlich dazu, dass eMSOT ohne Eingriff in den Körper auskommt und weder auf radioaktive Strahlung noch auf Kontrastmittel angewiesen ist, liefert die Methode Bilder in höherer zeitlicher und räumlicher Auflösung als andere Techniken. „Informationen über die Menge an Sauerstoff in Gewebe sind für Forschung und Behandlung in vielen Bereichen enorm wichtig“, sagt Vasilis Ntziachristos. „Es ist gut möglich, dass eMSOT zum Bildgebungs-Goldstandard wird, sobald die Methode bereit für die klinische Anwendung ist.“

Interview zum Thema

Prof. Vasilis Ntziachristos erzählt im Interview mehr dazu, wie man Bildgebungsmethoden aus dem Entwicklungslabor in die Klinik bringt. (zum Artikel)

Kontakt

Dr. Barbara Schröder

Chair of Biological Imaging (CBI)
Technische Universität München
barbara.schroeder(at)tum.de

Originalpublikation

S. Tzoumas S, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, V. Ntziachristos. "Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues." Nature Communications (2016). DOI:10.1038/ncomms12121

 

Corporate Communications Center

Technische Universität München Paul Hellmich
paul.hellmich(at)tum.de

Weitere Artikel zum Thema auf www.tum.de:

Das Infrarot-Wärmebild auf der rechten Seite zeigt eine Maus, die mit OMVs mit Melanin behandelt wurde. Der Tumor (gelb) zeigt eine Temperaturerhöhung nach der Laserbestrahlung. Auf der linken Seite wurde die Maus mit OMVs ohne Melanin behandelt.

Schwarze Nanopartikel bremsen Tumorwachstum

Der dunkle Hautfarbstoff Melanin schützt uns vor schädlichen Sonnenstrahlen, indem er Lichtenergie aufnimmt und in Wärme umwandelt. Diese Fähigkeit lässt sich sehr effektiv für die Tumordiagnose und -therapie einsetzen. Das...

Veränderung des optoakustischen Signals von phototrophen Bakterien durch die Aufnahme von Makrophagen (außerhalb von Makrophagen: blau; innerhalb von Makrophagen: rot). Die in der oberen Reihe schematisch dargestellte Situation kann sowohl im Mikroskop (2. Reihe) als auch mittels MSOT (unten) nachverfolgt werden. Dabei gibt die Veränderung des MSOT-Signals (3. Reihe) Auskunft über die Verteilung von Rhodobacter-Zellen, die sich innerhalb und außerhalb von Makrophagen befinden und damit über ihre Lokalisation und Aktivität. (Bild: Helmholtz Zentrum München)

Mit Purpurbakterien auf Fresszellenjagd

Tumore sind in ihrer Zellzusammensetzung sehr unterschiedlich, was ihre Diagnose und Therapie schwierig macht. Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München hat nun gezeigt, dass sich...

Mit dem neuen "Open-Source"-Mikroskop NeuBtracker lassen sich Nervenaktivitäten während des natürlichen Bewegungsverhaltens von Zebrafischen beobachten. (Bild: A. Lauri / TUM)

Zebrafische live und in Farbe

Einem Wissenschaftlerteam vom Helmholtz Zentrum München und der Technischen Universität München (TUM) ist es gelungen, ein völlig neuartiges Mikroskop zu entwickeln. Der sogenannte NeuBtracker ist ein open source-Mikroskop,...

Ein Gefäß mit Zymonsäure. Dahinter sind unscharf die Autoren der Studie zu erkennen.

Neue Einblicke in den Tumorstoffwechsel

Bei Tumoren, Entzündungen und Durchblutungsstörungen gerät der Säure-Basen-Haushalt des Körpers lokal aus dem Gleichgewicht. Diese Veränderungen des pH-Werts ließen sich etwa für die Erfolgskontrolle von Krebsbehandlungen...

Gegenüberstellung eines Fluoreszenzbildes eines Zebrafischgehirns und einer  optoakkustisch erzeugten Aufnahme des Organs. (Bild: Razansky / TUM)

Dem Gehirn bei der Arbeit zuschauen

Live dabei sein, wenn Nervenzellen miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es, die Aktivierung von größeren Nervenverbänden – bis hin zu Gehirnen von kleinen...

Prof. Vasilis Ntziachristos. (Foto: Ntziachristos / TUM)

„Ein Bild sagt mehr als tausend Worte”

Moderne Bildgebungsmethoden gehen weit über die Möglichkeiten von Röntgenstrahlen hinaus. Prof. Vasilis Ntziachristos ist Inhaber des Lehrstuhls für Biologische Bildgebung an der Technischen Universität München (TUM) und...

Mini-Teilchenbeschleuniger "Munich Compact Light Source"

Erfolge im europäischen Wettbewerb

Neun Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) waren in der akutellen Vergaberunde der ERC-Grants erfolgreich. Die geförderten Projekte sind in den Disziplinen Medizin, Physik und...

Prof. Dr. Vasilis Ntziachristos, Experte für biomedizinische Bildgebung (Bild: A. Eckert/TU München)

Leibniz-Preis für Vasilis Ntziachristos

Prof. Vasilis Ntziachristos von der Technischen Universität München (TUM) erhält einen der renommiertesten deutschen Forschungspreise: Die Deutsche Forschungsgemeinschaft (DFG) verleiht dem Bioingenieur den mit 2,5...