TUM – Technische Universität München Menü
Leone Rossetti und Lara Kuntz am Fluoreszenz-Mikroskop (Foto: Andreas Heddergott / TUM)
Leone Rossetti und Lara Kuntz am Fluoreszenz-Mikroskop. (Foto: Andreas Heddergott / TUM)
  • Forschung

Interdisziplinäres Team erforscht Grenzbereich zwischen Sehne und Knochen

Dem Geheimnis der Achilles-Ferse auf der Spur

Gehen, laufen, rennen – jede Bewegung des Fußes zerrt an der Achillessehne. Bei Sprüngen kann die Belastung das Zehnfache des Körpergewichts betragen. Erstaunlicherweise hält die Verbindung zwischen Fersenbein und Achillessehne diesen enormen Kräften stand. Warum, das hat ein interdisziplinäres Team aus Medizin, Physik, Chemie und Ingenieurwissenschaften an der Technischen Universität München (TUM) herausgefunden.

Rund 8000 Risse der Achillessehne müssen in Deutschland jedes Jahr behandelt werden, obwohl sie die stärkste Sehne des menschlichen Körpers ist. Sie verbindet Fersenbein und Wadenmuskel und hält bis zum Zehnfachen des Körpergewichts aus. Benannt ist sie nach dem – fast – unverletzbaren griechischen Helden Achilleus, dem ein Pfeilschuss in die Ferse zum Verhängnis wurde.

„Obwohl in der Orthopädie tagtäglich Patientinnen und Patienten mit Sehnenverletzungen behandelt werden, wissen wir noch immer sehr wenig über den genauen feingeweblichen Aufbau am direkten Übergang von der Sehne zum Knochen: Die biochemischen Vorgänge, die Mikromechanik und die Mikrostruktur des Gewebes sind bisher kaum erforscht“, berichtet Prof. Dr. Rainer Burgkart, Oberarzt und Forschungsleiter am Lehrstuhl für Orthopädie und Sportorthopädie der TUM.

Dünne Fasern, perfekter Halt

Zusammen mit einem interdisziplinären Team aus Biochemie und Biophysik der TU München hat der Mediziner im Rahmen des neugegründeten Center for functional Protein Assemblies (CPA) und der Munich School of Bioengineering (MSB) das Geheimnis der Achillessehne entschlüsselt: Zwischen Sehnen und Knochen entdeckten die Experten eine Gewebeschicht, die aus extrem dünnen Proteinfasern besteht und für eine extrem hohe Stabilität sorgt.

Menschen sind daher in der Lage, über Hürden zu springen, hohe Sprünge und harte Landungen zu machen, ohne dass die Verbindung zwischen Sehne und Fersenbein Schaden nimmt. Tatsächlich reißt eher die Sehne, als dass sich die Verbindung zum Knochengewebe löst.

„Dass die Sehnen direkt am Knochen ansetzen, das war bislang die Annahme. Tatsächlich gibt es jedoch einen Übergangsbereich. Hier spleißt sich das Sehnengewebe auf in Dutzende von feinen Fasern mit einer ganz charakteristischen biochemischen Zusammensetzung“, erklärt Professor Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik und Leiter der interdisziplinären Forschungsgruppe. „Die dünnen Fasern sind fest in der zerklüfteten Oberfläche des Knochens verankert und mechanisch äußerst belastbar.“

Interdisziplinäres team: Medizin, Physik, Chemie und Ingenieurwissenschaften

Entdeckt wurden die feinen Fasern durch einen neuen, interdisziplinären Forschungsansatz: „Die Innovation der Arbeit liegt darin, dass wir verschiedene medizinische, physikalische und ingenieurwissenschaftliche Verfahren kombiniert haben“, sagt Bausch.

Ein Stück Schweineknochen mit Sehne, in der Orthopädie sorgfältig präpariert, wurde am Lehrstuhl für Zellbiophysik in eine Apparatur eingespannt und fixiert. Dann richteten die Forscherinnen und Forscher das Mikroskop auf die Grenzschicht, entlang derer die Sehne mit dem Knochen verwachsen ist. Mit Hilfe der Multiskalen-Mikroskopie-Technik wurden Dutzende von Aufnahmen erstellt und digital zu einem großen Bild zusammengeführt. „Auf diese Weise konnten wir die Struktur der feinen, aufgespleißten Fasern sichtbar machen“, berichtet Bausch.

Im nächsten Schritt verwendete das Team fluoreszierende Antikörper, um bestimmte Proteine zum Leuchten zu bringen. Hier zeigte sich, dass die dünnen Fasern eine andere biochemische Zusammensetzung haben als die eigentliche Sehne. Im dritten Teil des Experiments bewegten sie die Sehne unter Belastung hin und her und filmten dabei die Fasern. Das Ergebnis: Je nach Belastungsrichtungen sind unterschiedliche Fasern aktiv und stabilisieren den Kontakt.

Ergänzt wurden die lichtmikroskopischen Untersuchungen durch besonders hochauflösende Bilder eines Elektronenmikroskops. Mitarbeiter des Lehrstuhls für Medizinische Biophysik setzten außerdem einen Mikro-Computertomographen ein, mit dem sich die Grenzregion dreidimensional darstellen ließ. Am Lehrstuhl für organische Chemie wurden die unterschiedlichen Proteine in Sehnen und Übergangsfasern analysiert.

Ansätze für die Medizin der Zukunft

„Unsere Ergebnisse erlauben es erstmals, die biochemischen und biomechanischen Prozesse in der Kontaktzone zwischen Knochen und Sehne zu verstehen, die unserem Bewegungsapparat seine enorme Stabilität verleihen“, resümiert Bausch.

Mögliche Anwendungen ergeben sich sowohl in der Materialforschung als auch in der Medizin: Ingenieurtechnisch könnten innovative Verbindungen zwischen festen und weichen Stoffen hergestellt werden. Und in der Orthopädie sollen die Erkenntnisse genutzt werden, um künftig in der Tumorchirurgie Sehnen an Implantate zu refixieren.

Die Arbeit entstand in einem Projekt der aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzinitiative geförderten International Graduate School of Science and Engineering (IGSSE) und wurde vom Exzellenzcluster Nanosystems Initiative Munich (NIM) unterstützt.

Publikation:

L. Rossetti, L. A. Kuntz, E. Kunold, J. Schock, K. W. Müller, H. Grabmayr, J. Stolberg-Stolberg, F. Pfeiffer, S. A. Sieber, R. Burgkart and A. R. Bausch: The microstructure and micromechanics of the tendon–bone insertion, Nature Materials 27.02.2017 – DOI: 10.1038/NMAT4863

Kontakt:

Prof. Dr. Andreas R. Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480E-MailWeb

Corporate Communications Center

Technische Universität München Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Professor Bernhard Küster (Mitte), Daniel Paul Zolg und Mathias Wilhelm (l.) beim Erstellen der Substanzbibliothek PROPEL - ProteomeTools Peptide Library. (Foto: Andreas Heddergott / TUM)

Meilenstein für die Analyse menschlicher Proteome

Unter Leitung der Technischen Universität München (TUM) haben Wissenschaftler eine Bibliothek mit mehr als 330.000 Referenzpeptiden aufgebaut. Diese umfasst praktisch alle Proteine des menschlichen Proteoms. Das...

Modell eines zellulären Vesikels mit aktivem Zytoskelett (grün), das Kräfte auf die umgebende Zellmembran ausübt – Bild: Etienne Loiseau / TUM

Die Mechanik der Zelle

Lebende Zellen müssen sich aktiv verformen können, sonst könnten sie sich beispielsweise nicht teilen. An der Technischen Universität München (TUM) haben der Biophysiker Professor Andreas Bausch und sein Team ein...

Lara Kuntz erforscht, weshalb der Sehnen-Knochen-Ansatz der Achillessehne so stabil ist. Anfang Juli war sie beim Nobelpreisträgertreffen in Lindau. (Foto: Uli Benz)

Brennen für die eigene Forschung – und Spaß haben

Einmal an der Tagung der Nobelpreisträger in Lindau teilnehmen – dieser Wunsch ging für Lara Kuntz Anfang Juli in Erfüllung. Sie gehörte zu den 650 NachwuchswissenschaftlerInnen, die auf der Lindauer Tagung mit...

Fasern des Muskelproteins Aktin

TU München gründet Zentrum für Protein-Forschung

Die Technische Universität München (TUM) kombiniert ihre vielfachen Kompetenzen in der Proteinforschung und gründet das „TUM Center for Functional Protein Assemblies (CPA)“. Es wird fakultätsübergreifend die Funktionsweisen...

Das Bild zeigt Forscher im  Technikum des Forschungszentrums für Weiße Biotechnologie die an effizienteren Prozessen zur Produktion des Spinnenseidenproteins arbeiten.

Hochfeste Fasern aus Spinnenseide

Das TUM-Spinn-off AMSilk hat die weltweit erste künstliche Spinnenseiden-Faser produziert, die vollständig aus biotechnologisch gewonnenem Spinnenseiden-Protein hergestellt wird. Hinsichtlich ihrer Zugfestigkeit ist die...