Visualisierung der Entstehung eines Quasiteilchens – Bild: Harald Ritsch / IQOQI
Visualisierung der Entstehung eines Quasiteilchens – Bild: Harald Ritsch / IQOQI
  • Quantentechnologie, Forschung

Beobachtung der Entstehung von Quasiteilchen in EchtzeitQuasiteilchen in Zeitlupe

Bewegt sich ein Elektron in einem Festkörper, polarisiert es seine Umgebung. Die genaue Kenntnis der Wechselwirkung zwischen Elektron und Umgebung ist der Schlüssel zur Entwicklung zukünftiger, noch leistungsfähigerer Elektronik-Bausteine. Doch da diese Vorgänge in wenigen Attosekunden ablaufen, waren sie bisher experimentell kaum zu untersuchen. Mit einem Trick hat nun ein internationales Physiker-Team die Geburt eines Quasiteilchens aus Elektron und seiner Polarisationswolke studieren können.

Quasiteilchen gehören zu den wichtigsten Konzepten in der Physik kondensierter Materie. Bewegt sich beispielsweise ein Elektron in einem Festkörper, polarisiert es auf Grund seiner elektrischen Ladung seine Umgebung. Diese „Polarisationswolke“ bewegt sich zusammen mit dem Elektron, und beide gemeinsam können theoretisch als selbstständiges Quasiteilchen, als Polaron, beschrieben werden.

„Man kann das mit einem Skifahrer im Pulverschnee vergleichen“, sagt Rudolf Grimm, Professor an der Universität Innsbruck. „Der Skifahrer ist umhüllt von einer Wolke aus Schneekristallen. Gemeinsam bilden sie ein System, das andere Eigenschaften hat als der Skifahrer ohne Schneewolke.“

Doch die Ausbildung solcher Quasiteilchen in Festkörpersystemen in Echtzeit zu beobachten, war bisher kaum möglich. Denn die Prozesse laufen in Zeiträumen von Attosekunden ab. Eine Attosekunde verhält sich zu einer Sekunde in etwa so wie eine Sekunde zum Alter des Universums.

Die Methode der Atomuhren

Physikerinnen und Physiker der Technischen Universität München (TUM) und der Harvard University (USA) schlugen vor, die Methoden der hochgenauen Atomuhren zu nutzen, um mit ultrakalten Atomen eine Umgebung zu schaffen, in der die Bildung von Quasiteilchen quasi in Zeitlupe abläuft.

Der Gruppe um Rudolf Grimm am Institut für Experimentalphysik der Universität Innsbruck und am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften gelang es, unter diesen Bedingungen präzise kontrollierbare Vielteilchenzustände zu erzeugen. Damit ist es erstmals möglich, das Entstehen von Quasiteilchen in Echtzeit zu studieren.

In einer Vakuumkammer erzeugten die Wissenschaftler dazu ein ultrakaltes Quantengas aus vielen Lithiumatomen und wenigen Kaliumatomen. Für beide Atomsorten verwendeten sie Isotope, die als Fermionen den gleichen fundamentalen Charakter wie Elektronen haben. Über Magnetfelder ließen sich deren Wechselwirkung einstellen und auf diese Weise Fermi-Polaronen erzeugen, d.h. Kaliumatome, die von einer Wolke aus Litihum umhüllt werden.

„Während die natürliche Zeitskala solcher Quasiteilchen im Festkörper bei 100 Attosekunden liegt, dauert die Entstehung der Polaronen in einem solchen System einige Mikrosekunden“, sagt Michael Knap, Professor für Kollektive Quantendynamik an der TU München. „Die neue Methodik eröffnet damit einen neuen Weg, die Vorgänge in elektronischen Bausteinen besser zu verstehen. Wichtig ist dieses Verständnis beispielsweise für die Elektronik der Informationstechnologie oder für anspruchsvolle Bildgebungsverfahren in Medizin und Technik.“

Finanziell unterstützt wurden die Forschenden vom österreichischen Wissenschaftsfonds FWF im Rahmen des Spezialforschungsbereichs FoQuS und des Doktoratskollegs Atome, Licht und Moleküle (ALM), der National Science Foundation (USA) sowie des Institute for Advanced Study der TUM, der Walter Haefner Foundation, der ETH Foundation und der Simons Foundation. Weitere Kooperationspartner des Projekts waren Forschende der Monash University (Australien) und der Universität Amsterdam.

Publikation

Ultrafast many-body interferometry of impurities coupled to a Fermi sea
M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Walraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, E. Demler
Science, Oct. 7, 2016: Vol. 354, Issue 6308, pp. 96-99 – DOI: 10.1126/science.aaf5134

Kontakt:

Prof. Dr. Michael Knap
Rudolf Mößbauer Tenure Track Professur für Kollektive Quantendynamik
Technische Universität München
Am Coulombwall 4, 85748 Garching
Tel.: +49 89 289 12750E-MailWeb

Technische Universität München

Corporate Communications Center Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Schon ein Quantensystem mit 51 Qbits lässt sich mit Supercomputern kaum mehr berechnen – mit Quantensimulatoren ist das problemlos möglich. Wie man deren Ergebnisse dennoch überprüfen kann, hat nun ein Forschungsteam um Prof. Michael Knap (im Bild) und Prof. Dr. Christian Roos herausgefunden.

Quantensysteme und Bienenflug

Mehr als zwei Billiarden verschiedene Zustände kann ein Quantensystem mit nur 51 geladenen Atomen einnehmen. Sein Verhalten zu berechnen, ist für einen Quantensimulator ein Kinderspiel. Doch nachzuprüfen, ob das Ergebnis…

Künstliche Intelligenz hilft Physikern bei der Suche nach der optimalen Beschreibung von Quantenphänomenen.

Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und…

vier lilafarbene Kugeln

Unsterbliche Quantenteilchen

In der makroskopischen Welt ist der Zerfall unerbittlich: Zerbrochene Gegenstände fügen sich nicht von selbst wieder zusammen. In der Quantenwelt gelten jedoch andere Gesetze: Neue Forschungen zeigen, dass sogenannte…

Ein Team von Physikern hat ein ungewöhnlich stabiles Quantensystem realisiert – Bild: Christoph Hohmann / NIM

Stabiler Quantencocktail

Wenn James Bond beim Barkeeper seinen klassischen Martini bestellt, kann er darauf vertrauen, dass der die Zutaten des Cocktails im Shaker gut vermischt. In der Quantenwelt allerdings könnte er eine Überraschung erleben:…