Legt man die zehn Strukturen mit der geringsten Energie übereinander, so zeigt die Überlagerung schön, welche Struktur das hIAPP-Molekül in einer Membranumgebung bevorzugt - eine völlig andere Struktur als das freie Molekül einnehmen würde. (Bild: Diana Rodriguez Camargo /TUM)
Legt man die zehn Strukturen mit der geringsten Energie übereinander, so zeigt die Überlagerung schön, welche Struktur das hIAPP-Molekül in einer Membranumgebung bevorzugt - eine völlig andere Struktur als das freie Molekül einnehmen würde. (Bild: Diana Rodriguez Camargo /TUM)
  • Forschung

Lipid-Nanodisks stabilisieren fehlgefaltete Proteine für UntersuchungenWarum verursachen Fehlfaltungen Typ-2-Diabetes?

Verklumpen fehlgefaltete Proteine in insulinproduzierenden Zellen der Bauchspeicheldrüse, können diese absterben. Jetzt ist es Forscherinnen und Forschern der Technischen Universität München (TUM), der Universität Michigan und des Helmholtz Zentrums München gelungen, den Fehlfaltungsprozess genau in dem Moment zu stabilisieren, in dem er am gefährlichsten ist. Die Forscher hoffen, dass ihre Momentaufnahmen bei der Suche nach Wirkstoffen helfen, die die Fehlfaltung verhindern können.

Die Klumpen, die von fehlgefalteten Proteinen, sogenannten Plaques, verursacht werden, sind an vielen Krankheiten beteiligt: Plaques beeinträchtigen beispielsweise die Funktion von Neuronen im Gehirn von Menschen mit Demenz und Alzheimer. Die Bildung von Plaques tötet aber auch Insulin produzierende Inselzellen bei Menschen mit Typ-2-Diabetes ab.

„Im Allgemeinen ist die Toxizität für Zellen extrem schwer zu beweisen und zu charakterisieren“, sagte Ayyalusamy Ramamoorthy, Professor an der Universität von Michigan und Hans Fischer Fellow am Institute for Advanced Study der Technischen Universität München. „Auf der anderen Seite müssen wir das können, um Medikamente für eine mögliche Behandlung zu entwickeln.“

Lipid-Nanodisks stabilisieren aggregierende Proteine

Um die kritischen Proteinstrukturen zu untersuchen, verwendeten die Forscher Sushi-ähnliche Nanodisks. Sie bestehen aus Lipidschichten, die von einer Art Gürtel umgeben sind, um Modell-Proteine während des Aggregationsprozesses zu stabilisieren.

Die Wissenschaftlerinnen und Wissenschaftler wählten die Nanodisks so, dass sich die Proteine nur bis zu einem bestimmten Punkt falten können, genau bis zu dem Moment, in dem sie für die Inselzellen am gefährlichsten sind. Mithilfe von Kernspinresonanz-Spektroskopie gewann das Team dann Bilder der Proteinfaltung mit atomarer Auflösung.

„Die Nanodisks sind wie der Unterschied zwischen einem Schwimmbad und dem Ozean. Im Ozean gibt es keine Grenzen; ein Schwimmbad hat Grenzen“, sagte Ramamoorthy. „Mit dieser eingeschränkten Umgebung sind wir in der Lage, die Aggregation des Proteins zu stoppen. So können wir beobachten wie es aussieht, bevor alles zu einer Masse von Fasern verklumpt.“

Ein erster Schritt zur Entwicklung von Medikamenten

Die Fähigkeit, Proteine während des Prozesses der Amyloid-Aggregation stabil zu fixieren, erlaubt ihre Charakterisierung mit einer Vielzahl biophysikalischer Werkzeuge, einschließlich Fluoreszenz-, Massenspektrometrie, NMR und Kryo-Elektronenmikroskopie. Das Forschungsteam hofft, damit Wirkstoffverbindungen entwickeln und untersuchen zu können, mit denen sich die diesen Krankheiten zugrundeliegenden Fehlfaltungen verhindern lassen.

„Wir untersuchen jetzt Wechselwirkungen mit kleinen Molekülen, um zu sehen, ob wir den Aggregationsprozess, der Amyloide erzeugt, verhindern können“, sagte Ramamoorthy. „Diese Strukturinformationen sind sehr wichtig sowohl für das wissenschaftliche Verständnis der Pathologie von Amyloid-Erkrankungen als auch für die Entwicklung von Verbindungen zur Überwindung dieser Probleme.“

---

Die Studie wurde von Forschern der Technischen Universität München, der University of Michigan und des Helmholtz Zentrums München im Rahmen des TUM-IAS Schwerpunktthemas „Protein Misfolding and Amyloid Diseases“ durchgeführt. Prof. Ayyalusamy Ramamoorthy forschte im Rahmen der Studie als TUM-IAS Hans Fischer Senior Fellow bei Bernd Reif, Professor für Festkörper-NMR-Spektroskopie an der TUM.

Diese Arbeit wurde mit Mitteln des NIH (USA), der Helmholtz-Gemeinschaft und der Deutschen Forschungsgemeinschaft, des Exzellenzclusters "Zentrum für Integrierte Proteinforschung München" (CIPSM) und des von der Exzellenzinitiative und der Europäischen Union geförderten Institute for Advanced Study unterstützt. Das Gauss Center for Supercomputing stellte Rechenzeit im Garchinger Leibniz-Rechenzentrum zur Verfügung.

Publikation:

Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate
Diana C. Rodriguez Camargo, Kyle J. Korshavn, Alexander Jussupow, Kolio Raltchev, David Goricanec, Markus Fleisch, Riddhiman Sarkar, Kai Xue, Michaela Aichler, Gabriele Mettenleiter, Axel Karl Walch, Carlo Camilloni, Franz Hagn, Bernd Reif, Ayyalusamy Ramamoorthy
eLife, 2017; 6:e31226 – DOI: 10.7554/eLife.31226

Kontakt:

Prof. Dr. Bernd Reif
Technische Universität München
Professur für Festkörper-NMR-Spektroskopie
Lichtenbergstr 4, 85747 Garching, Germany
Tel.: +49 89 289 52615E-Mail - Web

Technische Universität München

Corporate Communications Center Dr. Andreas Battenberg
battenberg(at)zv.tum.de

Weitere Artikel zum Thema auf www.tum.de:

Mit regelmäßigen Glukose-Messungen und intensivierter Insulintherapie lässt sich bei Diabetes eine verbesserte Einstellung des Blutzuckerspiegels erreichen – heilbar ist Diabetes bislang nicht. Forschende der TUM haben nun aber einen Ansatzpunkt entdeckt um die Krankheit an der Wurzel zu packen.

Neuer Ansatz für die Diabetes-Therapie

Genau hundert Jahre nach der Entdeckung des Insulins und fünfzig Jahre nach der des Insulinrezeptors haben Forschende jetzt den Insulin-inhibitorischen Rezeptor „Inceptor“ entdeckt. Dies könnte neue Möglichkeiten zur…

Farblich markierte Betazellen. Grün: mit Flattop, Rot: Mit Flattop (Foto: Helmholtz Zentrum München)

Zweierlei Betazellen

Betazellen in der Bauchspeicheldrüse gibt es in verschiedenen Varianten. Forscherinnen und Forscher der Technischen Universität München (TUM), des  Helmholtz Zentrums München und des Deutschen Zentrums für Diabetesforschung…

Räumliche Struktur des alphaB-Crystallins, eine hexamere Untereinheit ist farblich heraus gehoben – Bild: Andi Mainz / TUM

Neues Einsatzgebiet für vielseitigen Helfer

Bei der Alzheimer Krankheit lagern sich Proteine zu langen Fibrillen zusammen. Dies führt zum Absterben der Nervenzellen. Kleine Hitzeschock-Proteine wirken dem entgegen. Wissenschaftler hoffen daher, sie als Wirkstoffe zur…

Ein Neuron mit Amyloid-Plaques. (Foto: Juan Gärtner/ Fotolia)

Moleküle können Proteinaggregation unterdrücken

Wenn Proteine Ihre Raumstruktur verändern und verklumpen, entstehen sogenannte amyloide Fibrillen und Plaques. Diese „Proteinaggregationsprozesse“ schädigen Zellen und lösen Krankheiten wie Alzheimer oder Typ 2 Diabetes…

Ein Fehler in der DNA-Steuerung erhöht das Diabetes-Typ-2-Risiko. Grundlage für diese Erkenntnis ist ein neues Verfahren, mit dem die Forscher DNA-Sequenzen verschiedener Arten vergleichen.

DNA-Kontrollfehler erhöht Risiko für Diabetes

Warum erkranken manche Menschen an Krebs, andere nicht? Wer ist anfällig für Altersdiabetes? Viele Krankheiten sind eng mit unserer DNA gekoppelt; bestimmte DNA-Marker signalisieren ein erhöhtes Krankheitsrisiko, zum…