Ein glühender Metalltropfen schwebt zwischen zwei Spulen im Neutronenstrahl. (Foto: Andrea Voit/TUM)
Ein glühender Metalltropfen schwebt zwischen zwei Spulen im Neutronenstrahl. (Foto: Andrea Voit/TUM)
  • Forschung

Deutsches Zentrum für Luft- und Raumfahrt am FRM II:Schwerelose Experimente mit geschmolzenem Metall

Untersuchungen, die sonst nur in der Schwerelosigkeit des Weltalls gelingen, führt Professor Andreas Meyer vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln mit einem neuen Messverfahren derzeit an der Forschungs-Neutronenquelle (FRM II) der Technischen Universität München (TUM) in Garching durch. Die Ergebnisse dürften vor allem die Metall- und Gießereiindustrie sehr interessieren: Der Leiter des Instituts für Materialphysik im Weltraum erforscht grundlegende Eigenschaften, die beim Reinigen, Gießen und Erstarren von Metallen wichtig sind.

In Gießprozessen liegen alle metallischen Materialien als Schmelzen vor. Die Art und Weise, wie die Schmelze erstarrt, bestimmt dabei wesentlich die Eigenschaften des Endproduktes. Eine zentrale Herausforderung für die Weiterentwicklung von Prozesstechniken und Produkten ist es, vom herkömmlichen “trial and error” hin zum computergestützten Materialdesign überzugehen. Allerdings sind die entscheidenden Mechanismen noch unzureichend verstanden, und die Datensätze sind unvollständig.

Wenig ist bekannt über die Diffusion der Atome im schmelzflüssigen Zustand dieser metallischen Werkstoffe. Die Kenntnis der Diffusion in der Flüssigkeit ist aber entscheidend für das Verständnis von Erstarrung und Gefügebildung. Sie bestimmen die Eigenschaften des Werkstoffes, wie Festigkeit und Korrosionsbeständigkeit. Probleme bei der Messung der Diffusion bereiten die hohen Schmelztemperaturen und die im Schwerefeld der Erde durch Auftrieb verursachte Strömung.

Weil Messungen im Weltraum teuer und zeitaufwändig sind, ist Meyer froh, dass am FRM II seine Proben wie im Weltraum schweben können. Dieser Zustand wird durch das Anlegen eines elektromagnetischen Wechselfelds realisiert, das im Innern einer Spule erzeugt wird. Das Metall schmilzt und schwebt als Schmelze in der Spule ohne diese zu berühren. Die Temperatur der Probe wird bis zu 200 °C unterhalb ihres Schmelzpunktes eingestellt. Weil sie völlig berührungsfrei schwebt, erstarrt diese unterkühlte Schmelze noch nicht. In diesem Zustand lässt sich der Diffusionskoeffizient – die Geschwindigkeit, mit der die Atome sich bewegen - des Metalls gut messen.

Die Messung übernehmen am Instrument TOFTOF (Time of Flight, Flugzeitspektrometer) des FRM II die Neutronen. Sie durchstrahlen die Schmelze, die meist kugelrund ist und einen Durchmesser von unter einem Zentimeter hat. Bevor sie auf die Probe treffen, haben die Neutronen eine ganz bestimmte Energie und Geschwindigkeit. Während ihres Durchgangs durch die Probe nehmen sie die Energie der sich darin bewegenden Atome auf und werden in ihrer Geschwindigkeit geändert. Das zeichnet ein Detektor auf, auf den die Neutronen nach der Probe treffen. Von der Energieänderung der Neutronen können die Wissenschaftler auf die Bewegung der Atome und damit auf ihre Diffusion in der Probe zurück schließen.

Die Experimente im Weltall sind vor allem notwendig, um den bei der Ausmessung der Beweglichkeit störenden Einfluss der Schwerkraft zu verhindern. Genau diesen Vorteil bietet auch die Messung mit Neutronen. Der eigentliche Kontakt der Neutronen mit den Atomkernen des Probenmaterials spielt sich in Picosekunden ab, einem Zeitbereich, in dem Störungen der Schwerkraft noch nicht wirksam werden.

„Derzeit peilen viele der deutschlandweit 1000 Gießereien den wichtigen Diffusionskoeffizienten einfach über den Daumen“, sagt Andreas Meyer. Die Folge: Ein hoher Ausschuss an qualitativ schlechtem Material, das Risse aufweist oder beim Gießen nicht die erwartete Form angenommen hat. Das kostet Zeit, Energie und Geld. Mit bekanntem Diffusionskoeffizienten könnte man Meyer zufolge die genauen Gieß-Bedingungen für Legierungen simulieren, was weniger Ausschuss zur Folge hätte und die Zahl der Probegüsse stark reduzieren würde. „Die Simulation von Erstarrung ist ein großer Markt“, sagt Meyer.

Bislang haben Andreas Meyer und sein Team bereits Aluminium- und Titan-Gusslegierungen, sowie die Diffusion metallischer Verunreinigungen in flüssigem Silizium untersucht. Das Ergebnis könnte unmittelbar bei der Reinigung von Silizium angewendet werden, das etwa für Photovoltaikanlagen benötigt wird. Selbst für reines flüssiges Titan wurde die Diffusion gerade erstmals am TOFTOF an der Forschungs-Neutronenquelle der TUM vermessen. Die Gruppe von Prof. Andreas Meyer will nun weitere Metalle untersuchen, wie sie in der Autoindustrie zum Einsatz kommen oder auch in der medizinischen Chirurgie.

Bildmaterial:


http://mediatum2.ub.tum.de/?cunfold=680095&dir=680095&id=680095

Kontakt:

Prof. Dr. Andreas Meyer
Deutsches Zentrum für Luft- und Raumfahrt
Institut für Materialphysik im Weltraum
51170 Köln
Tel: +49 2203 601 2667
E-Mail: Andreas.Meyer(at)dlr.de

Technische Universität München

Corporate Communications Center

Weitere Artikel zum Thema auf www.tum.de:

Dr. Zachary Evenson am TOFTOF Flugzeitspektrometer im FRM II. (Bild: S. Mast / TUM)

Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bisherige Flash-Speicherchips. Mithilfe der Forschungs-Neutronenquelle der Technischen Universität München (TUM)…

Physiker Josef Lichtinger begutachtet die

Lithium im Gehirn

Experimente mit Neutronen an der Technischen Universität München (TUM) zeigen, dass sich in der weißen Gehirnsubstanz das Antidepressivum Lithium stärker anreichert als in der grauen. Das lässt vermuten, dass es anders…

Gitter aus Spinwirbeln

Magnetische Monopole löschen Daten

Ein vor 80 Jahren postuliertes physikalisches Phänomen könnte den entscheidenden Schritt zur Realisierung neuartiger, extrem kompakter und langlebiger Datenspeicher durch magnetische Wirbel liefern. Wissenschaftler der…

Metallisches Terbium. (Foto: Astrid Eckert / TUM)

Radionuklid-Therapie gegen kleine Tumore und Metastasen

Im Kampf gegen Krebs könnte der Medizin schon bald ein neuer Verbündeter zur Seite stehen: Terbium-161. Seine wichtigste Waffe: Konversions- und Auger-Elektronen. Aufbauend auf dem Radionuklid Terbium-161 haben…

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). (Foto: Andrea Voit / TUM)

Bund stärkt Neutronenforschung in Garching

Die wissenschaftliche Nutzung der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) durch deutsche und internationale Forscher wird für die nächsten zehn Jahre mit insgesamt 198 Millionen Euro vom Bundesministerium…

Prof. Dr. Pfleiderer bereitet eine Probe in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz vor. (Photo: Wenzel Schuermann / TUM)

Strom bewegt magnetische Wirbel

Schneller, kleiner und energiesparender sollen die Rechner der Zukunft sein. Dazu müssen die Daten schneller geschrieben und verarbeitet werden. Diesem Ziel sind Physiker der Technischen Universität München (TUM) und der…

Dreiachsen-Spektrometer PUMA im FRM II. (Foto: Wenzel Schuermann / TUM)

Supraleitung bei hohen Temperaturen

Magnetische Wechselwirkungen könnten bewirken, dass bestimmte Materialien Strom verlustfrei leiten, und zwar bei höheren Temperaturen als klassische Supraleiter wie etwa Blei. Dazu haben Wissenschaftler vom…

Blick in die Probenkammer der Positronenquelle. (Foto: Jakob Mayer / TUM)

Mit Antiteilchen auf Fehlersuche

Die geheimnisvolle Antimaterie ist nicht nur exotisches Beiwerk in Kinofilmen wie „Illuminati“, sondern auch ein faszinierendes Wissenschaftsgebiet. An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der…

Neutronenstrahlung eröffnet wertvolle Einblicke in die Renaissance-Köpfchen des Florentiner Paradiestores. (Foto: Ralf Schulze / TUM)

Prophet unter der Neutronenlupe

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein. So werden an der…

Neutronen-Radiografie von Wasserablagerungen in der Isolierung von Flugzeugen. (Bild: casas)

Dem Wasser in Flugzeugen auf der Spur

Wenn es beim Landeanflug von der Decke der Flugzeugkabine tropft, dann ist das nur eine von vielen unangenehmen Folgen von zu viel Feuchtigkeit in der Isolierung des Flugzeugrumpfes. Physiker der Technischen Universität…

Römische Merkur Statuette. (Foto: Martin Mühlbauer)

Nippes aus dem alten Rom

Einen Blick in eine römische Gottheit hinein warfen jetzt Physiker an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM). Sie untersuchten für die Archäologische…

Sebastian Mühlbauer bei der Vorbereitung eines Experiments

Magnetische Wirbelfäden in der Elektronensuppe

Physiker der Technischen Universität München (TUM) und der Universität zu Köln haben in der metallischen Verbindung Mangansilizium eine neue Form magnetischer Ordnung entdeckt. Das Gitter aus magnetischen Wirbelfäden, über…

Uwe Wasmuth im FRM II mit seinem Werkstück. (Foto: TU München)

Spannungen in Stahl gegossen

Spannungen in Metallen führen zu Verformungen und schlimmstenfalls zu Rissen im Material. Betroffen von solchen Eigenspannungen sind vor allem Werkstücke, die aus zwei verschiedenen Metallen bestehen, wie etwa…

3D-Tomografie einer Säugetierlunge. (Bild: Robert Metzke, Burkhard Schillinger, TU München)

Neue Strategien könnten Tausenden das Leben retten

Aktuellen Schätzungen zufolge werden in Europa jedes Jahr mehr als 100.000 Patienten mit akutem Lungenversagen intensivmedizinisch behandelt. Müssen Patienten mehrere Tage künstlich beatmet werden, sinkt die Überlebensrate…

Ein Zylinder aus mit Neutronen dotiertem Silizium. (Foto: W. Schürmann, TU München)

Halbleiter für energiesparende Hochleistungselektronik

Zwischen Thomas Alva Edison und George Westinghouse tobte um 1880 ein erbitterter Streit: Edison setzte auf Gleichstrom, Westinghouse wollte Wechselstrom-Netze einführen. Er hatte erkannt, dass es viel praktischer war, den…

Reaktorbecken im FRM II. (Foto: Andreas Heddergott)

TUM-Forschungsreaktor liefert die ersten Neutronen

Die Forschungs-Neutronenquelle FRM-II der Technischen Universität München in Garching hat heute die ersten Neutronen erzeugt. "Damit ist die Inbetriebsetzung der weltweit modernsten Neutronenquelle in das entscheidende…

HSTS